Giải hệ phương trình sau
\(x\sqrt{y}+y\sqrt{x}=30\)
\(x\sqrt{x}+y\sqrt{y}=35\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
HPT \(\Leftrightarrow \left\{\begin{matrix}
\sqrt{xy}(\sqrt{x}+\sqrt{y})=30(1)\\
(\sqrt{x}+\sqrt{y})(x-\sqrt{xy}+y)=35\end{matrix}\right.\)
\(\Rightarrow 35\sqrt{xy}(\sqrt{x}+\sqrt{y})=30(\sqrt{x}+\sqrt{y})(x-\sqrt{xy}+y)\)
\(\Leftrightarrow (\sqrt{x}+\sqrt{y}))(30x-65\sqrt{xy}+30y)=0\)
Nếu $\sqrt{x}+\sqrt{y}=0$ thì từ $(1)$ suy ra $\sqrt{xy}.0=30$ (vô lý)
Nếu $30x-65\sqrt{xy}+30y=0$
$\Leftrightarrow 6x-13\sqrt{xy}+6y=0$
$\Leftrightarrow (2\sqrt{x}-3\sqrt{y})(3\sqrt{x}-2\sqrt{y})=0$
$\Rightarrow \sqrt{x}=\frac{3}{2}\sqrt{y}$ hoặc $\sqrt{x}=\frac{2}{3}\sqrt{y}$
Thay lần lượt từng TH vào $(1)\Rightarrow (x,y)=(9,4); (4,9)$
Lời giải:
HPT \(\Leftrightarrow \left\{\begin{matrix}
\sqrt{xy}(\sqrt{x}+\sqrt{y})=30(1)\\
(\sqrt{x}+\sqrt{y})(x-\sqrt{xy}+y)=35\end{matrix}\right.\)
\(\Rightarrow 35\sqrt{xy}(\sqrt{x}+\sqrt{y})=30(\sqrt{x}+\sqrt{y})(x-\sqrt{xy}+y)\)
\(\Leftrightarrow (\sqrt{x}+\sqrt{y}))(30x-65\sqrt{xy}+30y)=0\)
Nếu $\sqrt{x}+\sqrt{y}=0$ thì từ $(1)$ suy ra $\sqrt{xy}.0=30$ (vô lý)
Nếu $30x-65\sqrt{xy}+30y=0$
$\Leftrightarrow 6x-13\sqrt{xy}+6y=0$
$\Leftrightarrow (2\sqrt{x}-3\sqrt{y})(3\sqrt{x}-2\sqrt{y})=0$
$\Rightarrow \sqrt{x}=\frac{3}{2}\sqrt{y}$ hoặc $\sqrt{x}=\frac{2}{3}\sqrt{y}$
Thay lần lượt từng TH vào $(1)\Rightarrow (x,y)=(9,4); (4,9)$
Lời giải:
HPT \(\Leftrightarrow \left\{\begin{matrix}
\sqrt{xy}(\sqrt{x}+\sqrt{y})=30(1)\\
(\sqrt{x}+\sqrt{y})(x-\sqrt{xy}+y)=35\end{matrix}\right.\)
\(\Rightarrow 35\sqrt{xy}(\sqrt{x}+\sqrt{y})=30(\sqrt{x}+\sqrt{y})(x-\sqrt{xy}+y)\)
\(\Leftrightarrow (\sqrt{x}+\sqrt{y}))(30x-65\sqrt{xy}+30y)=0\)
Nếu $\sqrt{x}+\sqrt{y}=0$ thì từ $(1)$ suy ra $\sqrt{xy}.0=30$ (vô lý)
Nếu $30x-65\sqrt{xy}+30y=0$
$\Leftrightarrow 6x-13\sqrt{xy}+6y=0$
$\Leftrightarrow (2\sqrt{x}-3\sqrt{y})(3\sqrt{x}-2\sqrt{y})=0$
$\Rightarrow \sqrt{x}=\frac{3}{2}\sqrt{y}$ hoặc $\sqrt{x}=\frac{2}{3}\sqrt{y}$
Thay lần lượt từng TH vào $(1)\Rightarrow (x,y)=(9,4); (4,9)$
Đề thi chuyên SP hả em, bài này sử dụng Liên hợp với đánh giá em nhé:
Đầu tiên trừ 2 về mình có là
\(x\sqrt{y+4}+x\sqrt{y+11}-y\sqrt{x+4}-y\sqrt{x+11}=0\)
Từ hệ mình dễ dàng suy ra đc x,y>0
Anh liên hợp cho 1 cái nha
\(x\sqrt{y+4}-y\sqrt{x+4}=\sqrt{x^2y+4x^2}-\sqrt{y^2x+4y^2}=\dfrac{x^2y-y^2x+4x^2-4y^2}{\sqrt{.........}+\sqrt{.......}}=\left(x-y\right).\dfrac{xy+4x+4y}{\sqrt{.........}+\sqrt{............}}\)
Cái kia em cx liên hợp tương tự, đặt x-y của cả 2 cái khi liên hợp xong phương trình sẽ là
\(\left(x-y\right)\left(\dfrac{xy+4x+4y}{\sqrt{...}+\sqrt{...}}+\dfrac{xy+11x+11y}{\sqrt{........}+\sqrt{.....}}\right)=0\) Cái trong ngoặc to đùng hiển nhiên >0 với x,y>0. DO đó x-y=0 hay x=y
EM thế vào phương trình ban đầu thì có \(x\sqrt{x+4}+x\sqrt{x+11}=35\)
Đến đây thì nhẩm đc x=5 thoả mãn em giải bằng đánh giá:
Với x=5 suy ra......=35
Với x>5 suy ra......>35
Với x<5 suy ra.....<35
Kết luận đc x=5, do đó y=5
Note: hướng làm em nhé, bổ sung thêm điều kiện xác định linh tinh zô
ĐKXĐ: ...
Đặt \(\left\{{}\begin{matrix}\sqrt{x}=a\ge0\\\sqrt{y}=b\ge0\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}a^2b+ab^2=30\\a^3+b^3=35\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}3a^2b+3ab^2=90\\a^3+b^3=35\end{matrix}\right.\)
\(\Rightarrow\left(a+b\right)^3=125\Rightarrow a+b=5\)
Cũng từ \(a^2b+ab^2=30\Rightarrow ab\left(a+b\right)=30\Rightarrow ab=\dfrac{30}{a+b}=6\)
Theo Viet đảo, a và b là nghiệm của:
\(t^2-5t+6=0\Rightarrow\left[{}\begin{matrix}t=2\\t=3\end{matrix}\right.\)
\(\Rightarrow\left(a;b\right)=...\Rightarrow x;y\)
a) \(x^3-4x^2-5x+6=\sqrt[3]{7x^2+9x-4}\)
\(\Leftrightarrow-7x^2-9x+4+x^3+3x^2+4x+2=\sqrt[3]{7x^2+9x-4}\)
\(\Leftrightarrow-\left(7x^2+9x-4\right)+\left(x+1\right)^3+x+1=\sqrt[3]{7x^2+9x-4}\) (*)
Đặt \(\sqrt[3]{7x^2+9x-4}=a;x+1=b\)
Khi đó (*) \(\Leftrightarrow-a^3+b^3+b=a\)
\(\Leftrightarrow\left(b-a\right).\left(b^2+ab+a^2+1\right)=0\)
\(\Leftrightarrow b=a\)
Hay \(x+1=\sqrt[3]{7x^2+9x-4}\)
\(\Leftrightarrow\left(x+1\right)^3=7x^2+9x-4\)
\(\Leftrightarrow x^3-4x^2-6x+5=0\)
\(\Leftrightarrow x^3-4x^2-5x-x+5=0\)
\(\Leftrightarrow\left(x-5\right)\left(x^2+x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{-1\pm\sqrt{5}}{2}\end{matrix}\right.\)