A=2+2^2+2^3+...+2^2020. Hãy chứng tỏ A chia hết cho 31.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A=2+2^2+2^3+...+2^2020
= (2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+2^10)+.....+ VIẾT LIỀN VÀO (2^2016+2^2017+2^2018+2^2019+2^2020)
=2.(1+2+2^2+2^3+2^4)+2^6.(1+2+2^2+2^3+2^4)+...+ 2^2016.(1+2+2^2+2^3+2^4)
= 2.31+2^6.31+.....+2^2016.31
=31.(2+2^6+...+2^2016) chia hết cho 31
Suy ra A chia hết cho 31
mk mất công làm nên bn tick cho mk nhé
`#3107.101107`
\(A = 2 + 2^2 + 2^3 + ... + 2^{2020} + 2^{2021} + 2^{2022}\)
\(= (2 + 2^2) + (2^3 + 2^4) + ... + (2^{2021} + 2^{2022})\)
\(=2(1+2) + 2^3(1 + 2) + ... + 2^{2021}(1 + 2)\)
\(=(1 + 2)(2 + 2^3 + ... + 2^{2021})\)
\(= 3(2 + 2^3 + ... + 2^{2021})\)
Vì \(3(2 + 2^3 + ... + 2^{2021})\) \(\vdots\) \(3\)
`\Rightarrow A \vdots 3`
Vậy, `A \vdots 3.`
a=2+2^2+2^3+...+2^10
a=(2+2^2)+(2^3+2^4)+...+(2^9+2^10)
a=2.(1+2)+2^3.(1+2)+...+2^9.(1+2)
a=3.(2+2^3+...+2^9)
=> a chia hết cho 3
a=2+2^2+2^3+...+2^10
a=(2+2^2+2^3+2^4+2^5)+(2^6+2^7+2^8+2^9+2^10)
a=2.(1+2+4+8+16)+2^6.(1+2+4+8+16)
a=31.(2+2^6)
=> a chia hết cho 31
chúc bạn học tốt nha
a, A = 2+22+23+...+210
A = (2+22)+(23+24)+...+(29+210)
A = 2(1+2) + 23(1+2) +.....+ 29(1+2)
A = 2.3 + 23.3 +....+ 29.3
A = 3.(2+23+...+29) chia hết cho 3 (đpcm)
b, A = 2+22+23+...+210
A = (2+22+23+24+25)+(26+27+28+29+210)
A = 2(1+2+22+23+24) + 26.(1+2+22+23+24)
A = 2.31 + 26.31
A = 31.(2+26) chia hết cho 31 (Đpcm)
Bài 3:
\(A=5+5^2+..+5^{12}\)
\(5A=5\cdot\left(5+5^2+..5^{12}\right)\)
\(5A=5^2+5^3+...+5^{13}\)
\(5A-A=\left(5^2+5^3+...+5^{13}\right)-\left(5+5^2+...+5^{12}\right)\)
\(4A=5^2+5^3+...+5^{13}-5-5^2-...-5^{12}\)
\(4A=5^{13}-5\)
\(A=\dfrac{5^{13}-5}{4}\)
A=7 mu 2020 mu 2019-3 mu 2016 mu 2015 :5 chung to A la so chan
có A=2(1+2)+2^3(1+2)+..+2^2019(1+2)
=2.3+2^3.3+...+2^2019.3
=3(2+2^3+...+2^2019)⋮3
Có A=2(1+2+2^2+2^3+2^4)+...+2^2016(1+2+2^2+2^3+2^4)
=2.31+.....+2^2016.31
=31.(2+....+2^2016)⋮31