K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2019

\(x^2=\left(x+y\right)^2\)

\(\Leftrightarrow x^2=x^2+2xy+y^2\)

\(\Leftrightarrow2xy+y^2=0\)

\(\Leftrightarrow y\left(2x+y\right)=0\)

\(\Leftrightarrow\orbr{\begin{cases}y=0\\y=-2x\end{cases}}\)

\(\left(x+y\right)^2=\left(x+9\right)^2\)

\(\Leftrightarrow x^2+2xy+y^2=x^2+18x+81\)

\(\Leftrightarrow2xy-18x+y^2=81\left(1\right)\)

Thay y = 0  vào ( 1 ) ta có :

\(0-18x+0=81\Leftrightarrow x=-\frac{9}{2}\)

Thay \(y=-2x\) vào ( 1 ) ta có :
\(2x.\left(-2x\right)-18x+\left(-2x\right)^2=81\)

\(\Leftrightarrow-4x^2-18x+4x^2=81\)

\(\Leftrightarrow x=-\frac{9}{2}\)

Vì \(-\frac{9}{2}\) là nghiệm âm nên phương trình không có nghiệm dương

Chúc bạn học tốt !!!

23 tháng 9 2019

Giả sử có nghiệm nguyên dương của P

Vì \(x< x+9\)\(\forall x\ge0\)

\(\Rightarrow x^2< \left(x+9\right)^2\)

mà \(x^2=\left(x+9\right)^2\left(gt\right)\)\(\Rightarrow\)vô lý 

Vậy P không có nghiệm nguyên dương

6 tháng 1 2018

<=> [x.(x+3)] . [(x+1).(x+2)] = y^2

<=> (x^2+3x).(x^2+3x+2) = y^2

<=> (x^2+3x+1)^2-1 = y^2

<=> (x^2+3x+1)^2-y^2 = 1

<=> (x^2+3x+1-y).(x^2+3x+1+y) = 0

Đến đó bạn tự giải nha

Tk mk nha

4 tháng 4 2017

Câu 2/ 

\(\frac{1}{x^2\left(x^2+y^2\right)}+\frac{1}{\left(x^2+y^2\right)\left(x^2+y^2+z^2\right)}+\frac{1}{x^2\left(x^2+y^2+z^2\right)}=1\)

Điều kiện \(\hept{\begin{cases}x^2\ne0\\x^2+y^2\ne0\\x^2+y^2+z^2\ne0\end{cases}}\)

Xét \(x^2,y^2,z^2\ge1\)

Ta có: \(\hept{\begin{cases}x^2\ge1\\x^2+y^2\ge2\end{cases}}\)

\(\Rightarrow x^2\left(x^2+y^2\right)\ge2\)

\(\Rightarrow\frac{1}{x^2\left(x^2+y^2\right)}\le\frac{1}{2}\left(1\right)\)

Tương tự ta có: \(\hept{\begin{cases}\frac{1}{\left(x^2+y^2\right)\left(x^2+y^2+z^2\right)}\le\frac{1}{6}\left(2\right)\\\frac{1}{x^2\left(x^2+y^2+z^2\right)}\le\frac{1}{3}\left(3\right)\end{cases}}\)

Cộng (1), (2), (3) vế theo vế ta được

\(\frac{1}{x^2\left(x^2+y^2\right)}+\frac{1}{\left(x^2+y^2\right)\left(x^2+y^2+z^2\right)}+\frac{1}{x^2\left(x^2+y^2+z^2\right)}\le\frac{1}{2}+\frac{1}{6}+\frac{1}{3}=1\)

Dấu = xảy ra  khi \(x^2=y^2=z^2=1\)

\(\Rightarrow\left(x,y,z\right)=?\)

Xét \(\hept{\begin{cases}x^2\ge1\\y^2=z^2=0\end{cases}}\) thì ta có

\(\frac{1}{x^4}+\frac{1}{x^4}+\frac{1}{x^4}=1\)

\(\Leftrightarrow x^4=3\left(l\right)\)

Tương tự cho 2 trường hợp còn lại: \(\hept{\begin{cases}x^2,y^2\ge1\\z^2=0\end{cases}}\) và \(\hept{\begin{cases}x^2,z^2\ge1\\y^2=0\end{cases}}\)

4 tháng 4 2017

Bài 2/

Ta có:  \(\frac{x}{y}+\frac{y}{z}+\frac{z}{t}+\frac{t}{x}\ge4\sqrt[4]{\frac{x}{y}.\frac{y}{z}.\frac{z}{t}.\frac{t}{x}}=4>3\)

Vậy phương trình không có nghiệm nguyên dương.

8 tháng 11 2016

Ta có

\(1\left(x+1\right)\left(x+2\right)\left(x+8\right)\left(x+9\right)=y^2\)

\(\Leftrightarrow1\left(x^2+10x+9\right)\left(x^2+10x+16\right)=y^2\)

Đặt x2 + 10x + 16 = a thì pt thành

a(a + 7) = y2

<=> 4a2 + 28a = 4y2

<=> (4a2 + 28a + 49) - 4y2 = 49

<=> (2a + 7)2 - 4y2 = 49

<=> (2a + 7 - 2y)(2a + 7 + 2y) = 49

<=> (2a + 7 - 2y, 2a + 7 + 2y) = (1, 49; 49, 1; 7, 7; - 1,- 49; - 49, - 1; - 7, - 7)

Thế vào rồi giải sẽ tìm được x,y

9 tháng 11 2016

thanks

30 tháng 5 2017

Tìm nghiệm nguyên dương của phương trình: x^2+(x+y)^2=(x+9)^2 - Đại số - Diễn đàn Toán học

1 tháng 8 2015

=> 5x2 + 5xy + 5y2 = 7x + 14y

=> 5x2 + 5xy - 7x + 5y- 14y = 0 

=> 5x+ (5y -7).x + (5y - 14y) = 0   (*)

Tính \(\Delta\) = (5y - 7)- 4.5.(5y - 14y) = -75y2 + 210y + 49  

Để x nguyên thì \(\Delta\) là số chính phương <=> -75y2 + 210y + 49  = k( với k nguyên)

=> - 3. (25y- 2.5y.7 + 49) + 196 = k2

=> -3.(5y - 7)+ 196 = k2

=> 3.(5y - 7)+ k= 196 => 3. (5y-7)2  \(\le\) 196 => (5y - 7)2  \(\le\) 66 =>-8  \(\le\)  5y - 7 \(\le\) 8

=> -1/5  \(\le\) y \(\le\) 3

y nguyên nên y có thể bằng 0; 1;2;3

Với tưng giá trị của y ta thay vào (*) => x 

Các giá trị x; y nguyên tìm được là các giá trị thỏa mãn yêu cầu