tìm n biết 5^n+5^n-1+5^n-2=155
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1)Thực hiện phép tính: 8/5*10+8/10*15+8/15*20+...+8/150*155
2)Tìm n thuộc N để D thuộc Z: D=3n+3/n+4
a)
\(A=5^{50}-5^{48}+5^{46}-5^{44}+...+5^6-5^4+5^2-1\)
\(5^2.A=5^2.\left(5^{50}-5^{48}+5^{46}-5^{44}+...+5^6-5^4+5^2-1\right)\)
\(25A=5^{52}-5^{50}+5^{48}-5^{46}+...+5^8-5^6+5^4-5^2\)
\(A+25A=\left(5^{50}-5^{48}+5^{46}-5^{44}+...+5^6-5^4+5^2-1\right)+\left(5^{52}-5^{50}+5^{48}-5^{46}+...+5^8-5^6+5^4-5^2\right)\)
\(26A=5^{22}-1\)
\(A=\dfrac{5^{22}-1}{26}\).
b)
\(26A+1=5^n\)
\(\Leftrightarrow\left(5^{52}-1\right)+1=5^n\)
\(\Leftrightarrow5^{52}=5^n\)
\(\Rightarrow n=52\).
c)
\(A=\left(5^{50}-5^{48}\right)+\left(5^{46}-5^{44}\right)+...+\left(5^6-5^4\right)+\left(5^2-1\right)\)
\(=5^{48}.\left(5^2-1\right)+5^{44}.\left(5^2-1\right)+...+5^4.\left(5^2-1\right)+1.\left(5^2-1\right)\)
\(=5^2.24.\left(5^{46}+5^{42}+...+5^2\right)+24\)
\(=25.4.6.\left(5^{46}+5^{42}+...+5^2\right)+24\)
\(=100.6.\left(5^{46}+5^{42}+...+5^2\right)+24⋮100\)
\(\Rightarrow A⋮100\).
Đặt 111...11 (n chữ số 1) =a thì 9a+1=100...00 (n chữ số 0) \(=10^n\)
Ta có: \(U_n=111...11555...55\) (n chữ số 1 và n chữ số 5)
=111...11 (n chữ số 1) . 100...00 (n chữ số 0) + 555...55 (n chữ số 5)
\(=a.10^n+5a=a\left(9a+1\right)+5a=9a^2+a+5a=9a^2+6a\)
\(\Rightarrow U_n+1=9a^2+6a+1=\left(3a+1\right)^2=\left(333...33+1\right)^2\) (n chữ số 3)
\(=333...334^2\) (n-1 chữ số 3) => \(U_n+1\) là 1 số chính phương
=> đpcm
Đặt 11...1(n chữ số 1)=a do đó 55...56(n chữ số 5)=55...5+1=5a+1 và 10^n=99...9+1=9a+1. Khi đó A = a.(9a+1)+5a+1=9a^2+6a+1=(3a+1)^2 là số cp
a) -3n + 2 \(⋮\)2n + 1
<=> 2(-3n + 2) \(⋮\)2n + 1
<=> -6n + 4 \(⋮\)2n + 1
<=> -3(2n + 1) + 7 \(⋮\)2n + 1
<=> 7 \(⋮\)2n + 1
<=> 2n + 1 \(\in\)Ư(7) = {\(\pm\)1; \(\pm\)7}
Lập bảng:
2n + 1 | -1 | 1 | -7 | 7 |
n | -1 | 0 | -4 | 3 |
Vậy n = {-1; 0; -4; 3}
b) n2 - 5n +7 \(⋮\)n - 5
<=> n(n - 5) + 7 \(⋮\)n - 5
<=> 7 \(⋮\)n - 5
<=> n - 5 \(\in\)Ư(7) = {\(\pm\)1; \(\pm\)7}
Lập bảng:
n - 5 | -1 | 1 | -7 | 7 |
n | 4 | 6 | -2 | 12 |
Vậy n = {4; 6; -2; 12}
c) (3 - x)(xy + 5) = -1
<=> (3 - x) và (xy + 5) \(\in\)Ư(-1)
Ta có: Ư(-1) \(\in\){-1; 1}
Lập bảng:
3 - x | -1 | 1 |
x | -4 | 2 |
xy + 5 | 1 | -1 |
y | 1 | -3 |
Vậy các cặp số (x; y) thỏa mãn lần lượt là (-4; 1) và (2; -3)
d) xy - 3x = 5
<=> x(y - 3) = 5
<=> x và y - 3 \(\in\)Ư(5)
Ta có: Ư(5) \(\in\){\(\pm\)1; \(\pm\)5}
Lập bảng:
x | -1 | 1 | -5 | 5 |
y-3 | -5 | 5 | -1 | 1 |
y | -2 | 8 | 2 | 4 |
Vậy các cặp số (x; y) thỏa mãn lần lượt là (-1; -2); (1; 8); (-5; 2) và (5; 4)
e) xy - 2y + x = -5
<=> y(x - 2) + (x - 2) = -7
<=> (x - 2)(y + 1) = -7
<=> (x - 2) và (y + 1) \(\in\)Ư(-7)
Ta có: Ư(-7) \(\in\){\(\pm\)1; \(\pm\)7}
Lập bảng:
x - 2 | -1 | 1 | -7 | 7 |
x | 1 | 3 | -5 | 9 |
y + 1 | 7 | -7 | 1 | -1 |
y | 6 | -8 | 0 | -2 |
Vậy các cặp số (x; y) thỏa mãn lần lượt là (1; 6): (3; -8); (-5; 0) và (9; -2)
\(5^n+5^{n-1}+5^{n-2}=155\)
\(5^{n-2}\left(5^2+5^1+1\right)=155\)
\(5^{n-2}.31=155\)
\(5^{n-2}=5\)
n-2 = 1
n= 3
Câu này dễ mà , tách ra là được
\(5^n+5^{n-1}+5^{n-2}=155\)
\(\Leftrightarrow5^{n-2}\left(5^2+5+1\right)=155\)
\(\Leftrightarrow5^{n-2}=155\div31\)
\(\Leftrightarrow5^{n-2}=5\)
\(\Rightarrow n-2=1\)
\(\Leftrightarrow n=3\)