tìm x, y
\(4x^2\)+\(2y^2\) +\(2y\)-4xy+1=0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi 1/4 số a là 0,25 . Ta có :
a . 3 - a . 0,25 = 147,07
a . (3 - 0,25) = 147,07 ( 1 số nhân 1 hiệu )
a . 2,75 = 147,07
a = 147,07 : 2,75
a = 53,48
a/ \(4x^2+2y^2-4xy+4x-2y+5=0\)
\(\Leftrightarrow\left(4x^2-4xy+y^2\right)+2\left(2x-y\right)+1+4=0\)
\(\Leftrightarrow\left(2x-y\right)^2+2\left(2x-y\right)+1+4=0\)
\(\Leftrightarrow\left(2x-y+1\right)^2+4=0\)
Với mọi x, y ta có :
\(\left(2x-y+1\right)^2\ge0\Leftrightarrow\left(2x-y+1\right)^2+4>0\)
\(\Leftrightarrow pt\) vô nghiệm
\(4x^2+2y^2+2y-4xy+1=0\)
\(\Leftrightarrow\left(4x^2-4xy+y^2\right)+\left(y^2+2y+1\right)=0\)
\(\Leftrightarrow\left(2x-y\right)^2+\left(y+1\right)^2=0\)
Vì \(\hept{\begin{cases}\left(2x-y\right)^2\ge0;\forall;x,y\\\left(y+1\right)^2\ge0;\forall x,y\end{cases}}\)\(\Rightarrow\left(2x-y\right)^2+\left(y+1\right)^2\ge0;\forall x,y\)
Do đó \(\left(2x-y\right)^2+\left(y+1\right)^2=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(2x-y\right)^2=0\\\left(y+1\right)^2=0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}2x+1=0\\y=-1\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x=\frac{-1}{2}\\y=-1\end{cases}}\)
Vậy ...