\(4x^4-32x+1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(4x^4-32x^2+1\)
\(=4x^4+12x^3+2x^2-12x^3-36x^2-6x+2x^2+6x+1\)
\(=2x^2\left(2x^2+6x+1\right)-6x\left(2x^2+6x+1\right)+\left(2x^2+6x+1\right)\)
\(=\left(2x^2-6x+1\right)\left(2x^2+6x+1\right)\)
4x⁴ - 32x² + 1
= (2x²)² - 2.2x².8 + 64 - 63
= (2x² - 8)² - (3√7)²
= (2x² - 8 - 3√7)(2x² - 8 + 3√7)
4x^4 - 32x^2 +1 = 4x^4 + 4x^2 +1 - 36x^2 = (2x^2 + 1)^2 - 36x^2 = (2x^2 - 6x + 1)(2x^2 + 6x + 1)
4 x4 - 32 x2 + 1
= ( 2 x2 )2 - 2 . 2x2. 8 + 64 - 63
= ( 2 x2 - 8 )2 - 63
= ( 2x2 - 8 + √63 ) ( 2x2 - 8 - √63 )
Xong
\(F=\frac{3}{2}x^4-\frac{1}{16}x^4+\frac{1}{32}x^4-\frac{1}{4}x^4\)
\(F=\left(\frac{3}{2}-\frac{1}{16}+\frac{1}{32}-\frac{1}{4}\right)x^4\)
\(F=\frac{39}{32}x^4\)
Ta có : x4 có số mũ là 4 => x4 luôn dương với mọi x ( x khác 0 )
\(\frac{39}{32}>1\Rightarrow\frac{39}{32}>0\)
=> \(\frac{39}{32}x^4\)luôn dương với mọi x ( x khác 0 )
=> \(\frac{39}{32}x^4>0\)với mọi x ( x khác 0 )
=> \(F=\frac{3}{2}x^4-\frac{1}{16}x^4+\frac{1}{32}x^4-\frac{1}{4}x^4>0\forall x\left(x\ne0\right)\)
a) \(4\sqrt{2x+1}-\sqrt{8x+4}+\dfrac{1}{2}\sqrt{32x+16}=12\) (ĐK: \(x\ge-\dfrac{1}{2}\))
\(\Leftrightarrow4\sqrt{2x+1}-\sqrt{4\left(2x+1\right)}+\dfrac{1}{2}\cdot4\sqrt{2x+1}=12\)
\(\Leftrightarrow4\sqrt{2x+1}-2\sqrt{2x+1}+2\sqrt{2x+1}=12\)
\(\Leftrightarrow4\sqrt{2x+1}=12\)
\(\Leftrightarrow\sqrt{2x+1}=\dfrac{12}{4}\)
\(\Leftrightarrow2x+1=3^2\)
\(\Leftrightarrow2x=9-1\)
\(\Leftrightarrow2x=8\)
\(\Leftrightarrow x=\dfrac{8}{2}\)
\(\Leftrightarrow x=4\left(tm\right)\)
b) \(\sqrt{4x^2-4x+1}=5\)
\(\Leftrightarrow\sqrt{\left(2x-1\right)^2}=5\)
\(\Leftrightarrow\left|2x-1\right|=5\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-1=5\left(x\ge\dfrac{1}{2}\right)\\2x-1=-5\left(x< \dfrac{1}{2}\right)\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}2x=6\\2x=-4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{6}{2}\\x=-\dfrac{4}{2}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\left(tm\right)\\x=-2\left(tm\right)\end{matrix}\right.\)
c) \(\dfrac{2\sqrt{x}-3}{\sqrt{x}-1}=-\dfrac{1}{2}\)(ĐK: \(x\ge0;x\ne1\))
\(\Leftrightarrow-\left(\sqrt{x}-1\right)=2\left(2\sqrt{x}-3\right)\)
\(\Leftrightarrow-\sqrt{x}+1=4\sqrt{x}-6\)
\(\Leftrightarrow4\sqrt{x}+\sqrt{x}=1+6\)
\(\Leftrightarrow5\sqrt{x}=7\)
\(\Leftrightarrow\sqrt{x}=\dfrac{7}{5}\)
\(\Leftrightarrow x=\dfrac{49}{25}\left(tm\right)\)
4x4-2.2.8x+64-63
=[2x2+8]2-63