K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 9 2019

\(E=\left|x-2005\right|+\left|2006-x\right|\ge\left|x-2005+2006-x\right|=1\)

\(\Rightarrow E_{min}=1\) khi \(2005\le x\le2006\)

3 tháng 12 2017

2006 . | x - 1 | + ( x - 1 )2 = 2005 . | 1 - x |

\(\Rightarrow\)2006 . | x - 1 | + ( x - 1 )2 - 2005 . | 1 - x | = 0

Mà | x - 1 | = | 1 - x | = x - 1 

Thay vào , ta được :

2006 . ( x - 1 ) + ( x - 1 )2 - 2005 . ( x - 1 ) = 0

( 2006 - 2005 ) . (x  - 1 ) + ( x - 1 )2 = 0

( x - 1 ) + ( x - 1 )2 = 0

vì ( x - 1 )2 \(\ge\)

\(\Rightarrow\hept{\begin{cases}x-1=0\\\left(x-1\right)^2=0\end{cases}}\)

\(\Rightarrow\hept{\begin{cases}x=1\\x=1\end{cases}\left(tm\right)}\)

Vậy x = 1

9 tháng 7 2016

khó quá ak

ừ, bạn bik làm thì giúp mình nha ^^

27 tháng 1 2017

D= \(\frac{x^3+y^3+z^3-3xyz}{2\left(x^2+y^2+z^2-xy-yz-zx\right)}\) tử = (x+y)3+z3 -3xy(x+y) - 3xyz =(x+y+z)(x2+2xy+y2-xz- yz+z2)-3xy(x+y+z) = (x+y+z)(x2+y2+z2-xy-yz-zx)

do đó D=\(\frac{x+y+z}{2}\)

2 tháng 7 2015

\(x-\sqrt{x^2-1}=\frac{x^2-\left(x^2-1\right)}{x+\sqrt{x^2-1}}=\frac{1}{x+\sqrt{x^2-1}}=t\)\(\Rightarrow x+\sqrt{x^2-1}=\frac{1}{t}\)

Ta có: \(\left(1+t\right)^{2015}+\left(1+\frac{1}{t}\right)^{2015}=2^{2016}\)(1)

Áp dụng Côsi ta có: 

\(1+t\ge2\sqrt{t}\Rightarrow\left(1+t\right)^{2015}\ge2^{2015}.\sqrt{t^{2015}}\)

\(1+\frac{1}{t}\ge\frac{2}{\sqrt{t}}\Rightarrow\left(1+\frac{1}{t}\right)^{2015}\ge\frac{2^{2015}}{\sqrt{t^{2015}}}\)

\(\Rightarrow\left(1+t\right)^{2015}+\left(1+\frac{1}{t}\right)^{2015}\ge2^{2015}\left(\sqrt{t^{2015}}+\frac{1}{\sqrt{t^{2015}}}\right)\)

\(\ge2^{2015}.2\sqrt{\sqrt{t^{2015}}.\frac{1}{\sqrt{t^{2015}}}}=2^{2016}\)

Dấu "=" xảy ra khi và chỉ khi t = 1.

Do đó, từ (1) => \(t=\frac{1}{x+\sqrt{x^2-1}}=1\Rightarrow x+\sqrt{x^2-1}=1\)

\(\Rightarrow1-x=\sqrt{x^2-1}\Rightarrow\left(1-x\right)^2=x^2-1\Leftrightarrow2-2x=0\Leftrightarrow x=1\)

Vậy: \(x=1\text{ là nghiệm (nguyên) duy nhất của phương trình.}\)

27 tháng 11 2018

\(A=\left|x-2006\right|+\left|x-1\right|=\left|x-2006\right|+\left|-x+1\right|\ge\left|x-2006-x+1\right|=2005\)

dấu = xảy ra khi \(\left(x-2006\right).\left(-x+1\right)\ge0\)

\(\Rightarrow1\le x\le2006\)

Vậy Min A=2015 khi và chỉ khi \(1\le x\le2006\)

28 tháng 11 2018

\(A=|x-2006|+|x-1|=|x-2006|+|1-x|\)

\(\Rightarrow A\ge|x-2006+1-x|=|-2005|=2005\)

\(\Rightarrow minA=2005\Leftrightarrow\left(x-2006\right).\left(1-x\right)\ge0\)

\(TH1:\hept{\begin{cases}x-2006< 0\\1-x< 0\end{cases}}\Rightarrow\hept{\begin{cases}x< 2006\\1< x\end{cases}}\Rightarrow\hept{\begin{cases}x< 2006\\x>1\end{cases}}\Rightarrow1< x< 2006\left(t/m\right)\)

\(TH2:\hept{\begin{cases}x-2006\ge0\\1-x\ge0\end{cases}}\Rightarrow\hept{\begin{cases}x\ge2006\\1\ge x\end{cases}}\Rightarrow\hept{\begin{cases}x\ge2006\\x\le1\end{cases}}\)(vô lý) 

Vậy \(minA=2005\Leftrightarrow1< x< 2006\)

8 tháng 8 2017

\(2006.\left|x-1\right|+\left(x-1\right)^2=2005.\left|1-x\right|\) (để thỏa mản là chúng bằng nhau thì ta cần tích của chúng bằng 0)

Ta tính vế phải:

\(2005.\left|x-1\right|=0\)

\(\left|x-1\right|=0\)

Ta có: x - 1 = 0

=> x = 0 + 1 = 1

Mà vế trái bằng vế phải nên x = 1

25 tháng 3 2020

\(\left|x+\frac{18}{7}\right|+\left|y+\frac{2005}{118}\right|+\left|z-2006\right|=0\)

<=> \(\hept{\begin{cases}x+\frac{18}{7}=0\\y+\frac{2005}{118}=0\\z-2006=0\end{cases}}\)

<=>\(\hept{\begin{cases}x=-\frac{18}{7}\\y=-\frac{2005}{118}\\z=2006\end{cases}}\)

Vậy....