K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

NV
18 tháng 9 2019

Vế phải là 17 hay 2017 bạn? Là 17 thì ko giải được đâu

3 tháng 10 2019

2017, mình ghi nhầm ấy mà

mà mình giải được rồi ^^

28 tháng 9 2017

Đặt \(\hept{\begin{cases}\sqrt{a^2+b^2}=z\\\sqrt{b^2+c^2}=x\\\sqrt{c^2+a^2}=y\end{cases}}\Rightarrow\hept{\begin{cases}a=\frac{y^2+z^2-x^2}{2}\\b=\frac{x^2+z^2-y^2}{2}\\c=\frac{x^2+y^2-z^2}{2}\end{cases}}\)\(\forall\hept{\begin{cases}x,y,z>0\\x+y+z=\sqrt{2017}\end{cases}}\)

Áp dụng BĐT Cauchy-Schwarz ta có:

\(b+c\le\sqrt{2\left(b^2+c^2\right)}=2x\Rightarrow\frac{a^2}{b+c}\ge\frac{y^2+z^2-x^2}{2\sqrt{2}x}\)

Tương tự cho 2 BĐT còn lại rồi cộng theo vế:

\(2\sqrt{2}\cdot VT\ge\frac{y^2+z^2-x^2}{x}+\frac{y^2+x^2-z^2}{z}+\frac{x^2+z^2-y^2}{y}\)

\(=\frac{y^2}{x}+\frac{z^2}{x}+\frac{y^2}{z}+\frac{x^2}{z}+\frac{x^2}{y}+\frac{z^2}{y}-\left(x+y+z\right)\)

\(\ge\frac{\left(2\left(x+y+z\right)\right)^2}{2\left(x+y+z\right)}-\sqrt{2017}=\sqrt{2017}\)

\(\Rightarrow2\sqrt{2}\cdot VT\ge\sqrt{2017}\Rightarrow VT\ge\frac{\sqrt{2017}}{2\sqrt{2}}=VP\)

1 tháng 9 2019

nhầm đề ak

Xin phép được sủa đề một chút nhé :)

\(\left\{{}\begin{matrix}x+y=z=a\\x^2+y^2+z^2=b\\a^2=b+4034\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x^2+y^2+z^2+2\left(xy+yz+zx\right)=a^2\\x^2+y^2+z^2=b\\a^2-b=4034\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a^2-b=2\left(xy+yz+zx\right)\\a^2-b=4034\end{matrix}\right.\Leftrightarrow xy+yz+zx=2017\)

\(M=x\sqrt{\frac{\left(2017+y^2\right)\left(2017+z^2\right)}{2017+x^2}}+y\sqrt{\frac{\left(2017+x^2\right)\left(2017+z^2\right)}{2017+y^2}}+z\sqrt{\frac{\left(2017+y^2\right)\left(2017+x^2\right)}{2017+z^2}}\)

\(=x\sqrt{\frac{\left(x+y\right)\left(y+z\right)\left(y+z\right)\left(z+x\right)}{\left(x+y\right)\left(z+x\right)}}+y\sqrt{\frac{\left(x+y\right)\left(z+x\right)\left(y+z\right)\left(z+x\right)}{\left(x+y\right)\left(y+z\right)}}+z\sqrt{\frac{\left(x+y\right)\left(z+x\right)\left(x+y\right)\left(y+z\right)}{\left(y+z\right)\left(z+x\right)}}\)

\(=2\left(xy+yz+zx\right)=4034\)

19 tháng 8 2018

a) điều kiện xác định : \(a>2;a\ne11\)

ta có : \(P=\left(\dfrac{\sqrt{a-2}+2}{3}\right)\left(\dfrac{\sqrt{a-2}}{3+\sqrt{a-2}}+\dfrac{a+7}{11-a}\right):\left(\dfrac{3\sqrt{a-2}+1}{a-3\sqrt{a-2}-2}-\dfrac{1}{\sqrt{a-2}}\right)\)

\(\Leftrightarrow P=\left(\dfrac{\sqrt{a-2}+2}{3}\right)\left(\dfrac{\sqrt{a-2}}{3+\sqrt{a-2}}+\dfrac{a+7}{\left(3+\sqrt{a-2}\right)\left(3-\sqrt{a-2}\right)}\right):\left(\dfrac{3\sqrt{a-2}+1}{\sqrt{a-2}\left(\sqrt{a-2}-3\right)}-\dfrac{1}{\sqrt{a-2}}\right)\) \(\Leftrightarrow P=\left(\dfrac{\sqrt{a-2}+2}{3}\right)\left(\dfrac{\sqrt{a-2}\left(3-\sqrt{a-2}\right)+a+7}{\left(3+\sqrt{a-2}\right)\left(3-\sqrt{a-2}\right)}\right):\left(\dfrac{3\sqrt{a-2}+1-\sqrt{a-2}+3}{\sqrt{a-2}\left(\sqrt{a-2}-3\right)}\right)\) \(\Leftrightarrow P=\left(\dfrac{\sqrt{a-2}+2}{3}\right)\left(\dfrac{3\left(\sqrt{a-2}+3\right)}{\left(3+\sqrt{a-2}\right)\left(3-\sqrt{a-2}\right)}\right):\left(\dfrac{2\sqrt{a-2}+4}{\sqrt{a-2}\left(\sqrt{a-2}-3\right)}\right)\) \(\Leftrightarrow P=\left(\dfrac{\sqrt{a-2}+2}{3}\right)\left(\dfrac{3}{\left(3-\sqrt{a-2}\right)}\right)\left(\dfrac{\sqrt{a-2}\left(\sqrt{a-2}-3\right)}{2\left(\sqrt{a-2}+2\right)}\right)\) \(\Leftrightarrow P=\dfrac{-\sqrt{a-2}}{2}\)

19 tháng 8 2018

ta có : \(a+b=\sqrt{2017-a^2}+\sqrt{2017-b^2}\)

\(\Leftrightarrow\left(a+b\right)\left(\sqrt{2017-a^2}-\sqrt{2017-b^2}\right)=b^2-a^2\)

\(\Leftrightarrow b-a=\sqrt{2017-a^2}-\sqrt{2017-b^2}\)

\(\Leftrightarrow2b=2\sqrt{2017-a^2}\Leftrightarrow b^2=2017-a^2\Rightarrow\left(đpcm\right)\)

NV
12 tháng 10 2020

\(S=\frac{a}{a+2b}+\frac{b}{b+2c}+\frac{c}{c+2a}\)

\(S=\frac{a^2}{a^2+2ab}+\frac{b^2}{b^2+2bc}+\frac{c^2}{c^2+2ca}\)

\(S\ge\frac{\left(a+b+c\right)^2}{a^2+2ab+b^2+2bc+c^2+2ca}=\frac{\left(a+b+c\right)^2}{\left(a+b+c\right)^2}=1\)

\(S_{min}=1\) khi \(a=b=c=1\)

GTNN của S hoàn toàn không cần đến điều kiện \(abc=1\), nó luôn bằng 1 với mọi số thực dương a;b;c (nên điều kiện \(abc=1\) là thừa)

NV
12 tháng 10 2020

Do \(x^{2016}+y^{2016}+z^{2016}=1\Rightarrow\left\{{}\begin{matrix}0\le x^{2016}\le1\\0\le y^{2016}\le1\\0\le z^{2016}\le1\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x^{2017}\le x^{2016}\\y^{2017}\le y^{2016}\\z^{2017}\le z^{2016}\end{matrix}\right.\)

\(\Rightarrow x^{2017}+y^{2017}+z^{2017}\le x^{2016}+y^{2016}+z^{2016}\)

\(\Rightarrow x^{2017}+y^{2017}+z^{2017}\le1\)

Đẳng thức xảy ra khi vả chỉ khi \(\left(x;y;z\right)=\left(0;0;1\right)\) và hoán vị

\(\Rightarrow P=1\)

Gọi \(d=ƯC\left(m^2+n^2;m+n\right)\)

\(\Rightarrow\left(m+n\right)^2-\left(m^2+n^2\right)⋮d\Rightarrow2mn⋮d\)

TH1: \(2⋮d\Rightarrow d_{max}=2\) khi \(m;n\) cùng lẻ

TH2: \(m⋮d\) , mà \(m+n⋮d\Rightarrow n⋮d\)

\(\Rightarrow d=ƯC\left(m;n\right)\Rightarrow d=1\)

Th3: \(n⋮d\) tương tự như trên ta có \(d=1\)

Vậy ước chung lớn nhất A; B bằng 2 khi m; n cùng lẻ

29 tháng 9 2017

Ta có :   \(\left(x+\sqrt{x^2+2017}\right)\left(-x+\sqrt{x^2+2017}\right)=2017\left(1\right)\)

    \(\left(y+\sqrt{y^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017\left(2\right)\)

        nhân theo vế của ( 1 ) ; ( 2 ) , ta có :

     \(2017\left(-x+\sqrt{x^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017^2\)

    \(\Rightarrow\left(-x+\sqrt{x^2+2017}\right)\left(-y+\sqrt{y^2+2017}\right)=2017\)

  rồi bạn nhân ra , kết hợp với việc nhân biểu thức ở phần trên xong cộng từng vế , cuối cùng ta đc :

     \(xy+\sqrt{\left(x^2+2017\right)\left(y^2+2017\right)}=2017\)

     \(\Leftrightarrow\sqrt{\left(x^2+2017\right)\left(y^2+2017\right)}=2017-xy\)

     \(\Leftrightarrow x^2y^2+2017\left(x^2+y^2\right)+2017^2=2017^2-2\cdot2017xy+x^2y^2\) 

       \(\Rightarrow x^2+y^2=-2xy\Rightarrow\left(x+y\right)^2=0\Rightarrow x=-y\)

  A = 2017 

 ( phần trên mk lười nên không nhân ra, bạn giúp mk nhân ra nha :)   )

29 tháng 9 2017

2/ \(\frac{\sqrt{x-2011}-1}{x-2011}+\frac{\sqrt{y-2012}-1}{y-2012}+\frac{\sqrt{z-2013}-1}{z-2013}=\frac{3}{4}\)

\(\Leftrightarrow\frac{4\sqrt{x-2011}-4}{x-2011}+\frac{4\sqrt{y-2012}-4}{y-2012}+\frac{4\sqrt{z-2013}-4}{z-2013}=3\)

\(\Leftrightarrow\left(1-\frac{4\sqrt{x-2011}-4}{x-2011}\right)+\left(1-\frac{4\sqrt{y-2012}-4}{y-2012}\right)+\left(1-\frac{4\sqrt{z-2013}-4}{z-2013}\right)=0\)

\(\Leftrightarrow\left(\frac{x-2011-4\sqrt{x-2011}+4}{x-2011}\right)+\left(\frac{y-2012-4\sqrt{y-2012}+4}{y-2012}\right)+\left(\frac{z-2013-4\sqrt{z-2013}+4}{z-2013}\right)=0\)

\(\Leftrightarrow\frac{\left(\sqrt{x-2011}-2\right)^2}{x-2011}+\frac{\left(\sqrt{y-2012}-2\right)^2}{y-2012}+\frac{\left(\sqrt{z-2013}-2\right)^2}{z-2013}=0\)

Dấu = xảy ra khi \(\sqrt{x-2011}=2;\sqrt{y-2012}=2;\sqrt{z-2013}=2\)

\(\Leftrightarrow x=2015;y=2016;z=2017\)

19 tháng 1 2021

Áp dụng BĐT Cosi cho 2018 số:

\(2017.6^{2018}.\sqrt[2017]{m}+\dfrac{\left(2a\right)^{2018}}{m}\ge2018\sqrt[2018]{\left(6^{2018}.\sqrt[2017]{m}\right)^{2017}\dfrac{\left(2a\right)^{2018}}{m}}=2018.2.6^{2017}.a\)

\(\Leftrightarrow\dfrac{\left(2a\right)^{2018}}{m}\ge2018.2.6^{2017}.a-2017.6^{2018}.\sqrt[2017]{m}\)

\(\Leftrightarrow\dfrac{2\left(2a\right)^{2018}}{m}\ge2018.4.6^{2017}.a-2017.2.6^{2018}.\sqrt[2017]{m}\)

Tương tự: \(\dfrac{2\left(2b\right)^{2018}}{n}\ge2018.4.6^{2017}.b-2017.2.6^{2018}.\sqrt[2017]{n}\)

\(\dfrac{3.c^{2018}}{p}\ge2018.3.6^{2017}.c-2017.6^{2018}.3.\sqrt[2017]{p}\)

\(\Rightarrow S\ge2018.6^{2017}\left(4a+4b+3c\right)-2017.6^{2018}\left(2\sqrt[2017]{m}+2\sqrt[2017]{n}+3\sqrt[2017]{p}\right)\)

\(\ge2018.6^{2017}.42-2017.6^{2018}.7=7.6^{2018}>6^{2018}\)

Vậy \(S>6^{2018}\)