Giải phương trình
\(\left(\frac{x-3}{x-2}\right)^3-\left(x-3\right)^3=16\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
`a,(x+3)(x^2+2021)=0`
`x^2+2021>=2021>0`
`=>x+3=0`
`=>x=-3`
`2,x(x-3)+3(x-3)=0`
`=>(x-3)(x+3)=0`
`=>x=+-3`
`b,x^2-9+(x+3)(3-2x)=0`
`=>(x-3)(x+3)+(x+3)(3-2x)=0`
`=>(x+3)(-x)=0`
`=>` $\left[ \begin{array}{l}x=0\\x=-3\end{array} \right.$
`d,3x^2+3x=0`
`=>3x(x+1)=0`
`=>` $\left[ \begin{array}{l}x=0\\x=-1\end{array} \right.$
`e,x^2-4x+4=4`
`=>x^2-4x=0`
`=>x(x-4)=0`
`=>` $\left[ \begin{array}{l}x=0\\x=4\end{array} \right.$
1) a) \(\left(x+3\right).\left(x^2+2021\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x+3=0\\x^2+2021=0\end{matrix}\right.\\\left[{}\begin{matrix}x=-3\left(nhận\right)\\x^2=-2021\left(loại\right)\end{matrix}\right. \)
=> S={-3}
ĐKXĐ: ...
Đặt \(\left\{{}\begin{matrix}\sqrt{x+2}=a\ge0\\\sqrt{y}=b\ge0\end{matrix}\right.\) thì pt đầu trở thành:
\(a\left(a^2-b^2+1\right)=b\)
\(\Leftrightarrow a\left(a-b\right)\left(a+b\right)+a-b=0\)
\(\Leftrightarrow\left(a-b\right)\left(a^2+ab+1\right)=0\)
\(\Leftrightarrow a=b\Rightarrow\sqrt{x+2}=\sqrt{y}\Rightarrow y=x+2\)
Thay xuống pt dưới:
\(x^2+\left(x+3\right)\left(x+3\right)=x+16\)
\(\Leftrightarrow2x^2+5x-7=0\Rightarrow\left[{}\begin{matrix}x=1\Rightarrow y=3\\x=-\dfrac{2}{7}\left(loại\right)\end{matrix}\right.\)
ĐKXĐ: \(x\ne2\)
Áp dụng HĐT: \(a^3-b^3=\left(a-b\right)^3+3ab\left(a-b\right)\)
\(\left(\frac{x-3}{x-2}\right)^3-\left(x-3\right)^3=16\)
\(\Leftrightarrow\left(\frac{x-3}{x-2}-x+3\right)^3+\frac{3\left(x-3\right)^2}{x-2}\left(\frac{x-3}{x-2}-x+3\right)=16\)
\(\Leftrightarrow\left(\left(x-3\right)\left(\frac{1}{x-2}-1\right)\right)^3+\frac{3\left(x-3\right)^3}{x-2}\left(\frac{1}{x-2}-1\right)=16\)
\(\Leftrightarrow\left(\frac{-\left(x-3\right)^2}{x-2}\right)^3-\frac{3\left(x-3\right)^4}{\left(x-2\right)^2}-16=0\)
Đặt \(\frac{\left(x-3\right)^2}{x-2}=a\Rightarrow-a^3-3a^2-16=0\Rightarrow a=-4\)
\(\Rightarrow\left(x-3\right)^2+4\left(x-2\right)=0\Rightarrow x^2-2x+1=0\Rightarrow x=1\)