xy=1.tìm GTLN của A=\(\frac{x}{x^4+y^2}+\frac{y}{x^2+y^4}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng bđt Cauchy cho 2 số không âm :
\(x^4+y^2\ge2\sqrt{x^4y^2}=2x^2y=2xy\cdot x=x\)( vì \(xy=1\))
\(\Rightarrow\frac{x}{x^4+y^2}\le\frac{x}{x}=1\)
Hoan toàn tương tự : \(\frac{y}{x^2+y^4}\le\frac{y}{y}=1\)
Khi đó :
\(\frac{x}{x^4+y^2}+\frac{y}{x^2+y^4}\le1+1=2\)
Hay \(A\le2\)
Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x^4=y^2\\x^2=y^4\\xy=1\end{cases}\Leftrightarrow\orbr{\begin{cases}x=y=1\\x=y=-1\end{cases}}}\)
Áp dụng Bđt Cô si :
\(x^4+y^2\ge2\sqrt{x^4y^2}=2x^2y=2x\left(xy=1\right)\)
\(\Leftrightarrow\frac{1}{x^4+y^2}\le\frac{1}{2x}\)\(\Leftrightarrow\frac{x}{x^4+y^2}\le\frac{x}{2x}=\frac{1}{2}\left(1\right)\)
\(x^2+y^4\ge2\sqrt{x^2y^4}=2xy^2=2y\left(xy=1\right)\)
\(\Leftrightarrow\frac{1}{x^2+y^4}\le\frac{1}{2y}\Leftrightarrow\frac{y}{x^2+y^4}\le\frac{1}{2}\left(2\right)\)
Cộng theo vế của (1) và (2)
\(\Rightarrow A\le1\rightarrow Max_A=1\)
Dấu = khi x=y=1
Áp dụng BĐT AM-GM ta có:
\(A\le\frac{x}{2.\sqrt{x^4.y^2}}+\frac{y}{2.\sqrt{x^2y^4}}=\frac{x}{2.x^2y}+\frac{y}{2.x.y^2}=\frac{1}{2xy}+\frac{1}{2xy}=\frac{2}{2xy}=1\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}x^2=y^4\\x^4=y^2\end{cases}\Leftrightarrow x^2.x^4=y^2.y^4\Leftrightarrow x^6=y^6\Leftrightarrow}x=y=1\left(x,y>0\right)\)
Vậy \(A_{max}=1\Leftrightarrow x=y=1\)
Không biết bài này cô si ngược được không?
Dự đoán xảy ra cực trị tại x = y = 1
Cho x = 1 hoặc y = 1
Khi đó: \(A=\frac{1}{1+y^2}+\frac{1}{1+x^2}\)
Mà \(\frac{1}{1+y^2}=1-\frac{y^2}{1+y^2}\ge1-\frac{y^2}{2y}=1-\frac{y}{2}\)
Tương tự: \(\frac{1}{1+x^2}\ge1-\frac{x}{2}\)
Cộng theo vế hai BĐT: \(A\ge\left(1+1\right)-\left(\frac{x}{2}+\frac{y}{2}\right)\)\(\ge2-\left(\frac{1}{2}+\frac{1}{2}\right)=1\)
Cho x,y là hai số dương thay đổi thỏa mãn xy=1, tìm gtln của \(\frac{x}{x^4+y^2}+\frac{y}{x^2+y^4}\)
với x,y dương, áp dụng bđt cosi ta có:
\(x^4+y^2\ge2\sqrt{x^4.y^2}=2x.xy=2x\left(xy=1\right)\Rightarrow\frac{x}{x^4+y^2}\le\frac{x}{2x}=\frac{1}{2}\)
tương tự thì: \(\frac{y}{x^2+y^4}\le\frac{1}{2}\)
=> (gọi là A đi ): \(A\le\frac{1}{2}+\frac{1}{2}=1\Leftrightarrow x=y=1\)
1. \(1=x^2+y^2\ge2xy\Rightarrow xy\le\frac{1}{2}\)
\(A=-2+\frac{2}{1+xy}\ge-2+\frac{2}{1+\frac{1}{2}}=-\frac{2}{3}\)
max A = -2/3 khi x=y=\(\frac{\sqrt{2}}{2}\)
\(\frac{1}{xy}+\frac{1}{xz}=\frac{1}{x}\left(\frac{1}{y}+\frac{1}{z}\right)\ge\frac{1}{x}.\frac{4}{y+z}=\frac{4}{\left(4-t\right)t}=\frac{4}{4-\left(t-2\right)^2}\ge1\) với t = y+z => x =4 -t
Cho \(xy=1\)và \(x,y>0\)
Tìm \(M_{max}=\frac{x}{x^4+y^2}+\frac{y}{x^2+y^4}\)
\(M=\frac{x}{x^4+\frac{1}{x^2}}+\frac{x}{y^2+\frac{1}{y^2}}\)
\(M=\frac{x^4}{x^6+1}+\frac{y^3}{y^6+1}\)
Áp dụng BĐT Cauchy
\(x^6+1\ge2x^3=>\frac{x^2}{x^6+1}\le\frac{1}{2}\)
Tương tự \(\frac{y^3}{y^6+1}\le\frac{1}{2}\)
\(=>M\le1\)
Dấu "=" xảy ra khi \(\hept{\begin{cases}xy=1\\x=1\\y=1\end{cases}}\Leftrightarrow x=y=1\)
Vậy \(M_{max}=1\)khi \(x=y=1\)
Ta có :\(2x^2+\frac{1}{x^2}+\frac{y^2}{4}=4\Leftrightarrow\left(x^2+\frac{1}{x^2}-2\right)+\left(x^2+\frac{y^2}{4}-xy\right)+xy=2\)
\(\Leftrightarrow\left(x-\frac{1}{x}\right)^2+\left(x-\frac{y}{2}\right)^2=2-xy\)
\(\Rightarrow2-xy\ge0\Leftrightarrow xy\le2\) có GTLN là \(2\)
Dấu "=" xảy ra \(\Leftrightarrow x=1;y=2\)
Có: \(\left\{{}\begin{matrix}x^4+y^2\ge2x^{2y}\\x^2+y^4\ge2xy^2\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{x}{x^4+y^2}\le\frac{x}{2x^{2y}}\\\frac{y}{x^2+y^4}\le\frac{y}{2xy^2}\end{matrix}\right.\)
Mà xy = 1 \(\Rightarrow\left\{{}\begin{matrix}\frac{x}{2x^{2y}}=\frac{x}{2x}=\frac{1}{2}\\\frac{y}{2xy^2}=\frac{y}{2y}=\frac{1}{2}\end{matrix}\right.\)
\(\Rightarrow\frac{x}{x^4+y^2}+\frac{y}{x^2+y^4}\le\frac{1}{2}+\frac{1}{2}=1\)
Vậy GTLN của A = 1
\("="\Leftrightarrow x=y=1\)
P/s: Bài này em không chắc chắn lắm, nhờ chị Akai Haruma kiểm tra giúp ạ.
\(xy=1\Rightarrow y=\frac{1}{x}\)
\(A=\frac{x}{x^4+\left(\frac{1}{x}\right)^2}+\frac{\frac{1}{x}}{x^2+\left(\frac{1}{x}\right)^4}=\frac{x^3}{x^6+1}+\frac{x^3}{x^6+1}=\frac{2x^3}{x^6+1}\le\frac{2x^3}{2\sqrt{x^6.1}}=\frac{2x^3}{2\left|x^3\right|}\le1\)
\(\Rightarrow A_{max}=1\) khi \(x=y=1\)