Với giá trị nguyên nào của n thì A = \(\frac{n+1}{n-2019}\)có GTLN, tính gtri lớn nhất
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{n+1}{n-2004}=\frac{\left(n-2004\right)+2005}{n-2004}=\frac{n-2004}{n-2004}+\frac{2005}{n-2004}=1+\frac{2005}{n-2004}\)
Để A có giá trị lớn nhất thì \(\frac{2005}{n-2004}\)đạt giá trị lớn nhất
mà n là số nguyên
=> n-2004 là số nguyên
=> \(n-2004=1\)
=> \(n=2005\)
=> \(A=\frac{2005+1}{2005-2004}=\frac{2006}{1}=2006\)
Giải:
Ta có: A = \(\frac{2017-2n}{8n-4}\)
=> 4A = \(\frac{8068-8n}{8n-4}=\frac{-\left(8n-4\right)+8064}{8n-4}=-1+\frac{8064}{8n-4}\)
Để A đạt giá trị lớn nhất <=> 4A đạt giá trị lớn nhất
<=> \(-1+\frac{8064}{8n-4}\) đạt giá trị lớn nhất
<=> 8n - 4 đạt giá trị nhỏ nhất
Do n \(\in\)Z => 8n - 4 = 4 => 8n = 8 => n = 1
Thay n = 1 vào biểu thức 4A, ta được :
4A = \(-1+\frac{8064}{8.1-4}=-1+\frac{8064}{4}=-1+2016=2015\)
<=> A = \(\frac{2015}{4}\) <=> Max của A = 2015/4 tại n = 1
a: ĐKXĐ: n<>3
Khi n=-2020 thì \(P=\dfrac{-2020+1}{-2020-3}=\dfrac{2019}{2023}\)
b: \(P=\dfrac{n-3+4}{n-3}=1+\dfrac{4}{n-3}\)
Để P lớn nhất thì n-3=1
=>n=4
Để M lớn nhất thì 11 - x ( mẫu số ) phải nhỏ nhất
=> 11 - x = 1
=> x = 10
=> \(M=\frac{2018-10}{11-10}=2008\)
Vậy,.....
Để \(\frac{2018-x}{11-x}\) có GTLN
thì \(11-x\) fải có GTNN
Mà \(11-x\ne0\)
=>11-x=1
=>x=10
=>\(M=\frac{2018-x}{11-x}=\frac{2018-10}{11-10}=2008\)
Vậy GTLN của M là 2008 tại x=10
Ta có:\(\frac{2n+3}{n+1}=\frac{2n+2+1}{n+1}=\frac{2.\left(n+1\right)+1}{n+1}\)=\(2+\frac{1}{n+1}\)
A có giá trị lớp nhất \(\Leftrightarrow\frac{1}{n+1}\)có giá trị lớn nhất
Xét \(\frac{1}{n+1}\)
Với n < -1\(\Rightarrow n+1< 0\)
\(\Rightarrow\frac{1}{n+1}< 0\)(1)
Với n > -1 \(\Rightarrow n+1>0\)
\(\Rightarrow\frac{1}{n+1}>0\)
Phân số \(\frac{1}{n+1}\)có tử và mẫu đều lớn hơn 0 nên \(\frac{1}{n+1}\)có giá trị lớn nhất \(\Leftrightarrow n+1\)có giá trị nhỏ nhất
mà n+1 >0
\(\Rightarrow n+1=1\)
\(\Rightarrow n=0\)
Khi đó \(\frac{1}{n+1}=1\)(2)
Từ (1) và (2) \(\Rightarrow\frac{1}{n+1}\)có giá trị lớn nhất là 1
Vậy MAX A= 1+2=3 \(\Leftrightarrow n=0\)
a) n-2\(\ne\) 0 \(\Rightarrow\)n\(\ne\) 2
b) A = \(\frac{2n+1}{n-2}\)với n = 1
A = \(\frac{2.1+1}{1-2}\)
A = \(\frac{3}{-1}\)
A = \(\frac{2n+1}{n-2}\)với n = -1
A = \(\frac{2.\left(-1\right)+1}{-1-2}\)
A = \(\frac{-1}{-3}\)= \(\frac{1}{3}\)
Câu c mk chịu .
2020 chắc vậy