(x+1) (x-2) < 0
(x-2) ( x + 2/3 ) > 0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(\left(x-3\right)\left(x-2\right)< 0\)
Vì \(x\in R\) nên \(x-3< x-2\) nên:
\(\left\{{}\begin{matrix}x-3< 0\\x-2>0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x< 3\\x>2\end{matrix}\right.\Rightarrow2< x< 3\)
Vậy....................
b, Giống câu a.
c, \(\left(x+3\right)\left(x-4\right)>0\)
\(\left\{{}\begin{matrix}\left\{{}\begin{matrix}x+3>0\\x-4>0\end{matrix}\right.\\\left\{{}\begin{matrix}x+3< 0\\x-4< 0\end{matrix}\right.\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\left\{{}\begin{matrix}x>-3\\x>4\end{matrix}\right.\\\left\{{}\begin{matrix}x< -3\\x< 4\end{matrix}\right.\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x>4\\x< -3\end{matrix}\right.\)
Vậy.............
d, Giống câu c
e, Dạng giống câu a
Chúc bạn học tốt!!!
a)\(\left(x-3\right)\left(x-2\right)< 0\)
Vì \(\left(x-3\right)\left(x-2\right)< 0\) nên phải có 1 số âm và 1 số dương
Mà \(x-3< x-2\)
Nên ta có:
\(x-3< 0\)=>\(x< 3\)
\(x-2>0\)=>\(x>2\)
Do đó:\(2< x< 3\)
Vậy \(2< x< 3\)
Các câu sau tương tự
\(\left(x-2\right)\left(x-3\right)>0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-2>0\Rightarrow x>2\\x-3>0\Rightarrow x>3\end{matrix}\right.\\\left\{{}\begin{matrix}x-2< 0\Rightarrow x< 2\\x-3< 0\Rightarrow x< 3\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow x>2;x< 3\)
\(\dfrac{x+1}{x+2}< 0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+1>0\Rightarrow x>-1\\x+2< 0\Rightarrow x< -2\end{matrix}\right.\\\left\{{}\begin{matrix}x+1< 0\Rightarrow x< -1\\x+2>0\Rightarrow x>-2\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow-2< x< -1\)
\(\left(x-1\right)\left(x+3\right)>0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1>0\Rightarrow x>1\\x+3< 0\Rightarrow x< -3\end{matrix}\right.\\\left\{{}\begin{matrix}x-1< 0\Rightarrow x< 1\\x+3>0\Rightarrow x>-3\end{matrix}\right.\end{matrix}\right.\)
\(\Rightarrow-3< x< 1\)
\(\dfrac{x+3}{x-1}< 0\)
\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+3>0\Rightarrow x>-3\\x-1< 0\Rightarrow x< 1\end{matrix}\right.\\\left\{{}\begin{matrix}x+3< 0\Rightarrow x< -3\\x-1>0\Rightarrow x>1\end{matrix}\right.\end{matrix}\right.\)
\(\dfrac{x+5}{x+8}>1\)
\(\Rightarrow x+5>x+8\)
(đến đây chịu)
\(\Rightarrow-3< x< 1\)
\(x\left(x-2\right)< 0\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< 0\\x-2>0\end{matrix}\right.\\\left\{{}\begin{matrix}x>0\\x-2< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< 0\\x>2\end{matrix}\right.\\\left\{{}\begin{matrix}x>0\\x< 2\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\in\varnothing\\x\in\left(0;2\right)\end{matrix}\right.\)
Vậy \(x\in\left(0;2\right)\) thỏa mãn.
\(x\left(x-2\right)>0\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>0\\x-2>0\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\x-2< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>0\\x>2\end{matrix}\right.\\\left\{{}\begin{matrix}x< 0\\x< 2\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\in\left(2;+\infty\right)\\x\in\left(-\infty;0\right)\end{matrix}\right.\)
Vậy \(x\in\left(2;+\infty\right)\cup\left(2;+\infty\right)\) thỏa mãn.
\(\left(x-1\right)\left(x+3\right)>0\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1>0\\x+3>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-1< 0\\x+3< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x>1\\x>3\end{matrix}\right.\\\left\{{}\begin{matrix}x< 1\\x< 3\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\in\left(1;+\infty\right)\\x\in\left(-\infty;-3\right)\end{matrix}\right.\)
Vậy.....
\(\left(x-1\right)\left(x+3\right)< 0\\ \Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x-1< 0\\x+3>0\end{matrix}\right.\\\left\{{}\begin{matrix}x-1>0\\x+3< 0\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x< 1\\x>-3\end{matrix}\right.\\\left\{{}\begin{matrix}x>1\\x< -3\end{matrix}\right.\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x\in\left(3-;1\right)\\x\in\varnothing\end{matrix}\right.\)
Vậy....
Mk lm mẫu câu A, mấy câu sau tự lm nha, có j thì cmt bên dưới hỏi mk
(x+3)(x-2) < 0
=> (x+3) và (x-2) trái dấu
TH1: x+3 > 0 và x-2 < 0 => x > -3 và x < 2 => -3 < x <2
TH2: x+3 < 0 và x-2 > 0 => x <-3 và x > 2 => 2 < x <-3 (vô lí)
Vậy -3 < x <2
Lưu ý là ở đây có vô số x nên k liệt kê ra hết đc
a, \(\left(x+1\right)\left(x-2\right)< 0\)
Th1: \(\hept{\begin{cases}x+1>0\\x-2< 0\end{cases}\Rightarrow}\hept{\begin{cases}x>-1\\x< 2\end{cases}\Rightarrow}-1< x< 2\)
Th2: \(\hept{\begin{cases}x+1< 0\\x-2>0\end{cases}\Rightarrow}\hept{\begin{cases}x< -1\\x>2\end{cases}}\)(vô lý)
b, \(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\)
Th1: \(\hept{\begin{cases}x-2>0\\x+\frac{2}{3}>0\end{cases}}\Rightarrow\hept{\begin{cases}x>2\\x>\frac{-2}{3}\end{cases}\Rightarrow}x>2\)
Th2: \(\hept{\begin{cases}x-2< 0\\x+\frac{2}{3}< 0\end{cases}}\Rightarrow\hept{\begin{cases}x< 2\\x< \frac{-2}{3}\end{cases}\Rightarrow}x< \frac{-2}{3}\)
\(\left(x-2\right)\left(x+\frac{2}{3}\right)>0\)
Mà \(x-2< x+\frac{2}{3}\)nên
\(\orbr{\begin{cases}x-2>0\\x+\frac{2}{3}< 0\end{cases}}\Leftrightarrow\orbr{\begin{cases}x>2\\x< \frac{-2}{3}\end{cases}}\)