K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 9 2019

a, 2(a2+b2)>(a+b)2

<=>2a2+2b2>a2+2ab+b2

<=>a2-2ab+b2>0

<=>(a-b)2>0 đúng vs mọi a,b

26 tháng 9 2018

chữ " b" mk ghi ở phần b) trước "CMR " là gõ nhầm đấy, ko liên quan j đến bài toán đâu !!

AH
Akai Haruma
Giáo viên
30 tháng 4 2023

Lời giải:

Giả sử $(a^2+b^2, ab)>1$. Khi đó, gọi $p$ là ước nguyên tố lớn nhất của $(a^2+b^2,ab)$

$\Rightarrow a^2+b^2\vdots p; ab\vdots p$

Vì $ab\vdots p\Rightarrow a\vdots p$ hoặc $b\vdots p$

Nếu $a\vdots p$. Kết hợp $a^2+b^2\vdots p\Rightarrow b^2\vdots p$

$\Rightarrow b\vdots p$

$\Rightarrow p=ƯC(a,b)$ . Mà $(a,b)=1$ nên vô lý 

Tương tự nếu $b\vdots p$
Vậy điều giả sử là sai. Tức là $(a^2+b^2, ab)=1$

8 tháng 8 2016

B2: \(\left(a+b+c\right)^2=a^2+b^2+c^2+2\left(ab+bc+ca\right)=4\)

\(\Rightarrow\orbr{\begin{cases}a+b+c=2\\a+b+c=-2\end{cases}}\)

TH1: \(a+b+c=2\Rightarrow c=2-\left(a+b\right)\)

\(a^2+b^2+c^2=2\)\(\Leftrightarrow a^2+b^2+\left(2-a-b\right)^2=2\)

\(\Leftrightarrow a^2+b^2+ab-2\left(a+b\right)+1=0\)

\(\Leftrightarrow a^2+\left(b-2\right)a+b^2-2b+1=0\)

Xem đây là một phương trình bậc hai ẩn a, tham số b.

Để tồn tại a thỏa phương trình trên thì \(\Delta\ge0\)

\(\Leftrightarrow\left(b-2\right)^2-4\left(b^2-2b+1\right)\ge0\)

\(\Leftrightarrow b\left(3b-4\right)\le0\)\(\Leftrightarrow0\le b\le\frac{4}{3}\)

Do vai trò của a, b, c là như nhau nên \(0\le a,b,c\le\frac{4}{3}\)

(hoặc đổi biến thành b và tham số a --> CM được a, rồi thay \(b=2-c-a\) sẽ chứng minh được c)

TH2: \(a+b+c=-2\) --> tương tự trường hợp 1 nhưng kết quả sẽ là 

\(-\frac{4}{3}\le a,b,c\le0\)

Kết hợp 2 trường hợp lại, ta có đpcm.

8 tháng 10 2016

dễ quá 

dễ quá

mình biêt s

làm đó

18 tháng 1 2018

với a = b thì a - b = 0

ở bước (a+b)(a-b)=b(a-b) sang bước suy ra a+b=b bn đã chia cả hai vế cho a-b=0 là không được 

Vậy chỗ sai là không có phép chia cho 0 đâu nhé

P/s: Mk chưa học tới lớp 9, nếu sai mong bn thông cảm. :))

17 tháng 8 2020

a) Áp dụng Cauchy Schwars ta có:

\(M=\frac{a^2}{a+1}+\frac{b^2}{b+1}+\frac{c^2}{c+1}\ge\frac{\left(a+b+c\right)^2}{a+b+c+3}=\frac{9}{6}=\frac{3}{2}\)

Dấu "=" xảy ra khi: a = b = c = 1

17 tháng 8 2020

b) \(N=\frac{1}{a}+\frac{4}{b+1}+\frac{9}{c+2}\ge\frac{\left(1+2+3\right)^2}{a+b+c+3}=\frac{36}{6}=6\)

Dấu "=" xảy ra khi: x=y=1