Cho:\(x;y\ge0;x+y\le6.cm:-64\le x^2y\left(4-x-y\right)\le4\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
\(x^2+2x+6\)\(⋮\)\(x+4\)
\(\Leftrightarrow\)\(\left(x-2\right)\left(x+4\right)+14\)\(⋮\)\(x+4\)
Ta thấy \(\left(x-2\right)\left(x+4\right)\)\(⋮\)\(x+4\)
nên \(14\)\(⋮\)\(x+4\)
hay \(x+4\)\(\inƯ\left(14\right)=\left\{\pm1;\pm2;\pm7\right\}\)
Ta lập bảng sau:
\(x+4\) \(-7\) \(-2\) \(-1\) \(1\) \(2\) \(7\)
\(x\) \(-11\) \(-9\) \(-5\) \(-3\) \(-2\) \(3\)
Vậy....
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Giải:
Ta có: \(x.x+3x-13⋮x+3\)
\(\Rightarrow x\left(x+3\right)-13⋮x+3\)
\(\Rightarrow13⋮x+3\)
\(\Rightarrow x+3\in\left\{1;-1;13;-13\right\}\)
\(\left\{\begin{matrix}x+3=1\\x+3=-1\\x+3=13\\x+3=-13\end{matrix}\right.\Rightarrow\left\{\begin{matrix}x=-2\\x=-4\\x=10\\x=-16\end{matrix}\right.\)
Vậy...
![](https://rs.olm.vn/images/avt/0.png?1311)
![](https://rs.olm.vn/images/avt/0.png?1311)
Trước hết, ta c/m \(x^2y\left[4-\left(x+y\right)\right]\ge-64\)
Thật vậy: \(VT\ge-2x^2y=-\left(x.x.2y\right)\ge-\frac{\left(x+x+2y\right)^3}{27}\) (lưu ý cái dấu - phía trước nhá)
\(=-\frac{\left(2\left(x+y\right)\right)^3}{27}=-64\).
Đẳng thức xảy ra khi \(\hept{\begin{cases}x=2y\\x+y=6\end{cases}}\Leftrightarrow\hept{\begin{cases}x=4\\y=2\end{cases}}\)
Tiếp theo, chứng minh \(x^2y\left(4-x-y\right)\le4\)
Áp dụng BĐT \(ab\le\frac{\left(a+b\right)^2}{4}\)với chú ý bđt này đúng với mọi a, b là các số thực. Đẳng thức xảy ra khi a = b.
Ta có: \(x^2\left[y\left(4-x-y\right)\right]\le\frac{x^2\left(y+4-x-y\right)^2}{4}\)
\(=\frac{x^2\left(4-x\right)^2}{4}=\left[\frac{x\left(4-x\right)}{2}\right]^2\). Áp dụng BĐT trên một lần nữa:
\(\le\left[\frac{\frac{\left(x+4-x\right)^2}{4}}{2}\right]^2=4\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}x=2\\y=1\end{cases}}\) (tự giải rõ ra)
Hoàn tất chứng minh!