Tinh gia tri bieu thuc
A =\(\sin^215do+sin^240do+sin^260do+sin^275do+sin^250do+sin^230do\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(sina=\frac{3}{5}\Rightarrow sin^2a=\frac{9}{25}\) ; \(cos^2a=1-\frac{9}{25}=\frac{16}{25}\)
\(A=\frac{cota+tana}{cota-tana}=\frac{sina.cosa\left(cota+tana\right)}{sina.cosa\left(cota-tana\right)}=\frac{cos^2a+sin^2a}{cos^2a-sin^2a}=\frac{1}{cos^2a-sin^2a}=\frac{1}{\frac{16}{25}-\frac{9}{25}}=\frac{25}{7}\)
\(B=\frac{sin^2a-cos^2a}{sin^2a-3cos^2a}=\frac{\frac{sin^2a}{sin^2a}-\frac{cos^2a}{sin^2a}}{\frac{sin^2a}{sin^2a}-\frac{3cos^2a}{sin^2a}}=\frac{1-cot^2a}{1-3cot^2a}=\frac{1-\left(-\frac{1}{3}\right)^2}{1-3\left(-\frac{1}{3}\right)^2}=\)
\(C_1=sin^2a+cos^2a+cos^2a=1+cos^2a=1+\frac{1}{1+tan^2a}=1+\frac{1}{1+\left(-2\right)^2}\)
\(C_2=\left(sin^2a+cos^2a\right)\left(sin^2a-cos^2a\right)=sin^2a-cos^2a=1-2cos^2a\)
\(=1-\frac{2}{1+tan^2a}=1-\frac{2}{1+\left(-2\right)^2}\)
a) sin anpha = 2/3 => góc anpha = 42o
cos 42o = 0,743
tan 42o = 0,9
cot 42o = 1/tan 42o = 1/0,9 = 1,111
b) tan anpha + cot anpha = 3
<=> tan anpha + 1/tan anpha = 3
<=> tan2 anpha = 2
<=> tan anpha = \(\sqrt{2}\)
=> góc anpha = 55o
Ta có: a = sin 55o . cos 55o
<=> a = 0,469
tan a =2/3
=> đặt sin a = 2x thì cos a = 3x
rồi làm tiếp còn cách khác thì k biết làm
Ta có \(0< a< \dfrac{\Pi}{2}\)
=>Điểm đầu và cuối của a thuộc góc phần tư thứ nhất
=> sin a > 0 và cos a >0
Có \(cos^2a+sin^2a=1\)
\(\Rightarrow\left(\dfrac{3}{5}\right)^2+sin^2a=1\)\(\Rightarrow sin^2a=\dfrac{16}{25}\)
\(\Rightarrow sina=\dfrac{4}{5}\)
\(sin2a=2sinacosa=2.\dfrac{4}{5}.\dfrac{3}{5}=\dfrac{24}{5}\)
a, \(\dfrac{1-sin2a}{1+sin2a}\)
\(=\dfrac{sin^2a+cos^2a-2sina.cosa}{sin^2a+cos^2a+2sina.cosa}\)
\(=\dfrac{\left(sina-cosa\right)^2}{\left(sina+cosa\right)^2}\)
\(=\dfrac{2sin^2\left(a-\dfrac{\pi}{4}\right)}{2sin^2\left(a+\dfrac{\pi}{4}\right)}\)
\(=\dfrac{sin^2\left(\dfrac{\pi}{4}-a\right)}{sin^2\left(a+\dfrac{\pi}{4}\right)}\)
\(=\dfrac{cos^2\left(\dfrac{\pi}{4}+a\right)}{sin^2\left(\dfrac{\pi}{4}+a\right)}=cot\left(\dfrac{\pi}{4}+a\right)\)
b, \(\dfrac{sina+sinb.cos\left(a+b\right)}{cosa-sinb.sin\left(a+b\right)}\)
\(=\dfrac{sina+sinb.cosa.cosb-sinb.sina.sinb}{cosa-sinb.sina.cosb-sinb.cosa.sinb}\)
\(=\dfrac{sina.\left(1-sin^2b\right)+sinb.cosa.cosb}{cosa.\left(1-sin^2b\right)-sinb.sina.cosb}\)
\(=\dfrac{sina.cos^2b+sinb.cosa.cosb}{cosa.cos^2b-sinb.sina.cosb}\)
\(=\dfrac{\left(sina.cosb+sinb.cosa\right).cosb}{\left(cosa.cosb-sinb.sina\right).cosb}\)
\(=\dfrac{sin\left(a+b\right)}{cos\left(a+b\right)}=tan\left(a+b\right)\)
sina=cos(90-a) thay vào ta được
sin215+sin225+sin235+cos235+cos225+cos215=3
tương tự câu dưới ta được =3/2
\(\dfrac{sin\left(a-b\right)}{sina.sinb}+\dfrac{sin\left(b-c\right)}{sinb.sinc}+\dfrac{sin\left(c-a\right)}{sinc.sina}\)
\(=\dfrac{sina.cosb-cosa.sinb}{sina.sinb}+\dfrac{sinb.cosc-cosb.sinc}{sinb.sinc}+\dfrac{sinc.cosa-cosc.sina}{sina.sinc}\)
\(=\dfrac{cosb}{sinb}-\dfrac{cosa}{sina}+\dfrac{cosc}{sincc}-\dfrac{cosb}{sinb}+\dfrac{cosa}{sina}-\dfrac{cosc}{sincc}\)
\(=0\)
Mình dùng công thức cung phụ nhau \(\sin\left(90-a\right)=\cos a\)
Áp dụng công thức trên ta được
\(A=\cos^275+\cos^250+\cos^230+\sin^275+\sin^250+\sin^230\)
\(=\left(sin^230+\cos^230\right)+\left(\sin^250+\cos^250\right)+\left(\sin^275+\cos^275\right)\)
Tới đây áp dụng công thức sin2a+cos2a=1
Suy ra A=1+1+1
Vậy A=3