Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1./ \(x+y=3\Rightarrow\left(x+y\right)^3=27\Rightarrow x^3+y^3+3xy\left(x+y\right)=27\Rightarrow x^3+y^3+3\cdot2\cdot3=27.\)
\(\Rightarrow x^3+y^3=9\)
2./ \(\left(x+3\right)\left(x^2-3x+3^2\right)-x^3-2x-4=0\)
\(\Leftrightarrow x^3+27-x^3-2x-4=0\Leftrightarrow2x=23\Leftrightarrow x=\frac{23}{2}\)
1/ \(x+y=3\)
\(\Rightarrow\left(x+y\right)^2=9\)
\(\Rightarrow x^2+2xy+y^2=9\)
\(\Rightarrow x^2+4+y^2=9\)
\(\Rightarrow x^2+y^2=5\)
\(\Rightarrow A=x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=3.1=3\)
c) Ta có: M < 4 => 13,8 : ( 5,6 - x ) < 4
=> 5,6 - x < 13,8:4
5,6 - x < 3,45
x < 5,6 - 3,45
x < 2,15
Vậy x < 2,15
Bài 1:
a) Vì giá trị của biểu thức \(\frac{3x-2}{4}\) không nhỏ hơn giá trị của biểu thức \(\frac{3x+3}{6}\) nên \(\frac{3x-2}{4}\) \(\ge\) \(\frac{3x+3}{6}\)
TH1: \(\frac{3x-2}{4}\) = \(\frac{3x+3}{6}\)
=> (3x-2)6 = (3x+3)4
18x -12= 12x+12
=> x = 4
TH2: \(\frac{3x-2}{4}\) > \(\frac{3x+3}{6}\)
=> (3x-2)6 > (3x+3)4
18x-12> 12x+12
=> x \(\ge\) 5
b) Vì ( x+1)2 \(\ge\) 0; (x-1)2 \(\ge\) 0 mà (x+1) luôn lớn hơn (x-1) với mọi x nên không có giá trị của x thỏa mãn (x+1)2 nhỏ hơn (x-1)2
c) Phần c bạn cũng xét tương tự như phần a
TH1: \(\frac{2x-3}{35}+\frac{x\left(x-2\right)}{7}=\frac{x^2}{7}-\frac{2x-3}{5}\)
TH2: \(\frac{2x-3}{35}+\frac{x\left(x-2\right)}{7}<\frac{x^2}{7}-\frac{2x-3}{5}\)
a: Thay x=49 vào A, ta được:
\(A=\dfrac{2\cdot7+1}{7-3}=\dfrac{14+1}{4}=\dfrac{15}{4}\)
b: \(B=\dfrac{2x+36}{x-9}-\dfrac{9}{\sqrt{x}-3}-\dfrac{\sqrt{x}}{\sqrt{x}+3}\)
\(=\dfrac{2x+36}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}-\dfrac{9}{\sqrt{x}-3}-\dfrac{\sqrt{x}}{\sqrt{x}+3}\)
\(=\dfrac{2x+36-9\left(\sqrt{x}+3\right)-\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{2x+36-9\sqrt{x}-27-x+3\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(=\dfrac{x-6\sqrt{x}+9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\dfrac{\left(\sqrt{x}-3\right)^2}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\dfrac{\sqrt{x}-3}{\sqrt{x}+3}\)
c: \(P=A\cdot B=\dfrac{\sqrt{x}-3}{\sqrt{x}+3}\cdot\dfrac{2\sqrt{x}+1}{\sqrt{x}-3}=\dfrac{2\sqrt{x}+1}{\sqrt{x}+3}\)
P>1 khi P-1>0
=>\(\dfrac{2\sqrt{x}+1-\sqrt{x}-3}{\sqrt{x}+3}>0\)
=>\(\sqrt{x}-2>0\)
=>\(\sqrt{x}>2\)
=>x>4
Kết hợp ĐKXĐ, ta được: \(\left\{{}\begin{matrix}x>4\\x\ne9\end{matrix}\right.\)
bạn chỉ cấn thay x=0,y=-1 váo biểu thức rồi tính như bình thường là dc
Mình làm cho 1 câu nhá và mình là con trai
1)
a)C=\(\frac{x}{\sqrt{x}-1}-\frac{2x-\sqrt{x}}{x-\sqrt{x}}\)
=\(\frac{x\sqrt{x}+x}{x-1}-\frac{2x^2+x\sqrt{x}-x}{x\left(x-1\right)}\)
=\(\frac{x^2\sqrt{x}-x^2-x\sqrt{x}-x}{x\left(x-1\right)}\)
=\(\frac{x\left(x\sqrt{x}-x-\sqrt{x}-1\right)}{x\left(x-1\right)}\)
=\(\frac{\left(x-1\right)\sqrt{x}-\left(x-1\right)}{x-1}\)
=\(\frac{\left(x-1\right)\left(\sqrt{x}-1\right)}{x-1}\)
=\(\sqrt{x}-1\)
b)thay x=3+\(\sqrt{8}\) vào biểu thức C=\(\sqrt{x}-1\)
ta được C=\(\sqrt{3+\sqrt{8}}-1\)\(\approx\)1,4142
c)Ta cho C>0
<=>\(\sqrt{x}-1>0\)
<=>\(\sqrt{x}>1\)
<=>x>1
C<0
<=>\(\sqrt{x}-1< 0\)
<=>x<1
tương tự C=0 thì x=1
nhớ k mình đấy nhé bạn mất 30 phút để viết đó :))
\(P=\frac{x+2}{\sqrt{x}^3-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{\sqrt{x}+1}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)
\(P=\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{1}{\sqrt{x}-1}\)
\(P=\frac{x+2+x-1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)
2,
\(A=\frac{5\left(\sqrt{7}-\sqrt{2}\right)}{\left(\sqrt{7}-\sqrt{2}\right)\left(\sqrt{7}+\sqrt{2}\right)}+\frac{\sqrt{2}+1}{\left(\sqrt{2}-1\right)\left(\sqrt{2}+1\right)}-\frac{7\sqrt{7}}{7}\)
\(A=\frac{5\left(\sqrt{7}-\sqrt{2}\right)}{7-2}+\frac{\left(\sqrt{2}+1\right)}{2-1}-\sqrt{7}\)
\(A=\sqrt{7}-\sqrt{2}+\sqrt{2}+1-\sqrt{7}=1\)
\(P=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)