Cho x=\(\frac{a-5}{12}\)tìm a để
a)x<0
b)x>0
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(A=\left(\sqrt{6}+\sqrt{10}\right).\left(\sqrt{5}-\sqrt{3}\right)\)
\(=\sqrt{2}\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{5}-\sqrt{3}\right)\)
\(=2\sqrt{2}\)
\(B=\frac{1}{\sqrt{x}-2}-\frac{1}{\sqrt{x}+2}+1\)
\(=\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+1\)
\(=\frac{4}{x-4}+1\)
\(=\frac{4}{x-4}+\frac{x-4}{x-4}=\frac{x}{x-4}\)
a: Vì \(\dfrac{1}{2}\ne-\dfrac{2}{1}\)
nên hệ luôn có nghiệm duy nhất
\(\left\{{}\begin{matrix}x-2y=3-m\\2x+y=3\left(m+2\right)\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x-2y=3-m\\4x+2y=6\left(m+2\right)=6m+12\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}5x=3-m+6m+12=5m+15\\x-2y=3-m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=m+3\\2y=x-3+m=m+3-3+m=2m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}x=m+3\\y=m\end{matrix}\right.\)
Để x>0 và y<0 thì \(\left\{{}\begin{matrix}m+3>0\\m< 0\end{matrix}\right.\)
=>-3<m<0
b: \(A=x^2+y^2=\left(m+3\right)^2+m^2\)
\(=2m^2+6m+9\)
\(=2\left(m^2+3m+\dfrac{9}{2}\right)\)
\(=2\left(m^2+3m+\dfrac{9}{4}+\dfrac{9}{4}\right)\)
\(=2\left(m+\dfrac{3}{2}\right)^2+\dfrac{9}{2}>=\dfrac{9}{2}\forall m\)
Dấu '=' xảy ra khi \(m+\dfrac{3}{2}=0\)
=>\(m=-\dfrac{3}{2}\)
ĐK : \(x\ne2\); \(x\ne-2\)
a) \(A=\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}=\frac{x^3}{\left(x-2\right)\left(x+2\right)}-\frac{x}{x-2}-\frac{2}{x+2}\)
\(=\frac{x^3-x.\left(x+2\right)-2.\left(x-2\right)}{\left(x+2\right).\left(x-2\right)}=\frac{x^3-x^2-2x-2x+4}{\left(x+2\right).\left(x-2\right)}=\frac{x^3-x^2-4x+4}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{x^2.\left(x-1\right)-4.\left(x-1\right)}{\left(x+2\right)\left(x-2\right)}=\frac{\left(x-1\right).\left(x^2-4\right)}{\left(x+2\right)\left(x-2\right)}=\frac{\left(x-1\right)\left(x+2\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=x-1\)
b) - Để A > 0 thì x - 1 > 0 => x > 1
- Để A < 0 thì x - 1 < 0 => x < 1
c) Để | A | = 5 thì | x-1 | = 5
+ Nếu \(x-1\ge0\) thì \(x\ge1\) , ta có phương trình
x - 1 = 5 => x = 6 ( thỏa mãn )
+ Nếu x - 1 < 0 thì x < 1 , ta có phương trình :
-x + 1 = 5 < = > -x = 4 <=> x = -4 ( thỏa mãn )
Vậy tập nghiệm của phương trình là S = { -4 ; 6 }
https://olm.vn/hoi-dap/detail/258469425824.html . Bạn tham khảo link này
Áp dụng BĐT Cauchy cho 2 số không âm ta có :
\(A=\frac{a}{16}+\frac{1}{a}+\frac{15a}{16}\ge2\sqrt[2]{\frac{a}{16}.\frac{1}{a}}+\frac{60}{16}=\frac{17}{4}\)
Đẳng thức xảy ra khi và chỉ khi \(a=4\)
Vậy \(Min_A=\frac{17}{4}\)khi \(a=4\)
\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)
\(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)
Dấu "=" <=> x= y = 1/2
\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)
\(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)
Dấu "=" <=> x = 3y
\(\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}\)
\(=\frac{x\left(x^2+2x\right)}{2x\left(x+5\right)}+\frac{2\left(x+5\right)\left(x-5\right)}{2x\left(x+5\right)}+\frac{50-5x}{2x\left(x+5\right)}\)
\(=\frac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}\)
\(=\frac{x^3+4x^2-5x}{2x\left(x+5\right)}\)
a) ĐKXĐ: \(\hept{\begin{cases}x\ne0\\x\ne-5\end{cases}}\)
b) \(P=0\Leftrightarrow x^3+4x^2-5x=0\)
\(\Leftrightarrow\)x=0 ( ko tm đkxđ) hoặc x=1(tm đkxđ) hoặc x=-5(ktmdkxd)=> x=1
c)\(P=\frac{x\left(x+5\right)\left(x-1\right)}{2x\left(x+5\right)}=\frac{\left(x-1\right)}{2}\)
P>0 => x>1
P<0=> x<1
Chúc bạn học tốt :)
a,Tìm ĐKXĐ
\(2x+10\ne0\Rightarrow2\left(x+5\right)\ne0\Rightarrow x\ne-5\)
\(x\ne0\)
\(2x\left(x+5\right)\ne0\Rightarrow x\ne0;x\ne-5\)
a.Để x<0 thì a-5<0 suy ra: a<5
b.Để x>0 thì a-5>0 suy ra: a>5