K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

2 tháng 9 2019

a.Để x<0 thì a-5<0 suy ra: a<5

b.Để x>0 thì a-5>0 suy ra: a>5

18 tháng 7 2018

a)  \(A=\left(\sqrt{6}+\sqrt{10}\right).\left(\sqrt{5}-\sqrt{3}\right)\)

         \(=\sqrt{2}\left(\sqrt{3}+\sqrt{5}\right)\left(\sqrt{5}-\sqrt{3}\right)\)

         \(=2\sqrt{2}\)

  \(B=\frac{1}{\sqrt{x}-2}-\frac{1}{\sqrt{x}+2}+1\)  

       \(=\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}-\frac{\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}+1\)

       \(=\frac{4}{x-4}+1\)

       \(=\frac{4}{x-4}+\frac{x-4}{x-4}=\frac{x}{x-4}\)

a: Vì \(\dfrac{1}{2}\ne-\dfrac{2}{1}\)

nên hệ luôn có nghiệm duy nhất

\(\left\{{}\begin{matrix}x-2y=3-m\\2x+y=3\left(m+2\right)\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x-2y=3-m\\4x+2y=6\left(m+2\right)=6m+12\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}5x=3-m+6m+12=5m+15\\x-2y=3-m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=m+3\\2y=x-3+m=m+3-3+m=2m\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}x=m+3\\y=m\end{matrix}\right.\)

Để x>0 và y<0 thì \(\left\{{}\begin{matrix}m+3>0\\m< 0\end{matrix}\right.\)

=>-3<m<0

b: \(A=x^2+y^2=\left(m+3\right)^2+m^2\)

\(=2m^2+6m+9\)

\(=2\left(m^2+3m+\dfrac{9}{2}\right)\)

\(=2\left(m^2+3m+\dfrac{9}{4}+\dfrac{9}{4}\right)\)

\(=2\left(m+\dfrac{3}{2}\right)^2+\dfrac{9}{2}>=\dfrac{9}{2}\forall m\)

Dấu '=' xảy ra khi \(m+\dfrac{3}{2}=0\)

=>\(m=-\dfrac{3}{2}\)

23 tháng 7 2017

ĐK : \(x\ne2\)\(x\ne-2\)

a) \(A=\frac{x^3}{x^2-4}-\frac{x}{x-2}-\frac{2}{x+2}=\frac{x^3}{\left(x-2\right)\left(x+2\right)}-\frac{x}{x-2}-\frac{2}{x+2}\)

\(=\frac{x^3-x.\left(x+2\right)-2.\left(x-2\right)}{\left(x+2\right).\left(x-2\right)}=\frac{x^3-x^2-2x-2x+4}{\left(x+2\right).\left(x-2\right)}=\frac{x^3-x^2-4x+4}{\left(x+2\right)\left(x-2\right)}\)

\(=\frac{x^2.\left(x-1\right)-4.\left(x-1\right)}{\left(x+2\right)\left(x-2\right)}=\frac{\left(x-1\right).\left(x^2-4\right)}{\left(x+2\right)\left(x-2\right)}=\frac{\left(x-1\right)\left(x+2\right)\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}=x-1\)

b)  -  Để A > 0 thì   x - 1 > 0  =>  x > 1

     -  Để A < 0 thì   x - 1 < 0  =>  x < 1

c) Để  | A | = 5 thì   | x-1 | = 5

+ Nếu \(x-1\ge0\) thì \(x\ge1\) , ta có phương trình

x - 1 = 5 => x = 6 ( thỏa mãn ) 

+ Nếu x - 1 < 0 thì x < 1 , ta có phương trình : 

-x + 1 = 5  < = >  -x = 4  <=>  x = -4  ( thỏa mãn )

Vậy tập nghiệm của phương trình là S = { -4 ; 6 }

21 tháng 6 2020

https://olm.vn/hoi-dap/detail/258469425824.html . Bạn tham khảo link này

10 tháng 7 2020

Áp dụng BĐT Cauchy cho 2 số không âm ta có : 

\(A=\frac{a}{16}+\frac{1}{a}+\frac{15a}{16}\ge2\sqrt[2]{\frac{a}{16}.\frac{1}{a}}+\frac{60}{16}=\frac{17}{4}\)

Đẳng thức xảy ra khi và chỉ khi \(a=4\)

Vậy \(Min_A=\frac{17}{4}\)khi \(a=4\)

20 tháng 7 2019

\(1,A=\frac{1}{x^2+y^2}+\frac{1}{xy}=\frac{1}{x^2+y^2}+\frac{1}{2xy}+\frac{1}{2xy}\)

                                             \(\ge\frac{4}{\left(x+y^2\right)}+\frac{1}{\frac{\left(x+y\right)^2}{2}}\ge\frac{4}{1}+\frac{2}{1}=6\)

Dấu "=" <=> x= y = 1/2

20 tháng 7 2019

\(2,A=\frac{x^2+y^2}{xy}=\frac{x}{y}+\frac{y}{x}=\left(\frac{x}{9y}+\frac{y}{x}\right)+\frac{8x}{9y}\ge2\sqrt{\frac{x}{9y}.\frac{y}{x}}+\frac{8.3y}{9y}\)

                                                                                                  \(=2\sqrt{\frac{1}{9}}+\frac{8.3}{9}=\frac{10}{3}\)

Dấu "=" <=> x = 3y

25 tháng 12 2017

\(\frac{x^2+2x}{2x+10}+\frac{x-5}{x}+\frac{50-5x}{2x\left(x+5\right)}\)
\(=\frac{x\left(x^2+2x\right)}{2x\left(x+5\right)}+\frac{2\left(x+5\right)\left(x-5\right)}{2x\left(x+5\right)}+\frac{50-5x}{2x\left(x+5\right)}\)
\(=\frac{x^3+2x^2+2x^2-50+50-5x}{2x\left(x+5\right)}\)
\(=\frac{x^3+4x^2-5x}{2x\left(x+5\right)}\)
a) ĐKXĐ: \(\hept{\begin{cases}x\ne0\\x\ne-5\end{cases}}\)
b) \(P=0\Leftrightarrow x^3+4x^2-5x=0\)
\(\Leftrightarrow\)x=0 ( ko tm đkxđ) hoặc x=1(tm đkxđ) hoặc x=-5(ktmdkxd)=> x=1
c)\(P=\frac{x\left(x+5\right)\left(x-1\right)}{2x\left(x+5\right)}=\frac{\left(x-1\right)}{2}\)
P>0 => x>1
P<0=> x<1
Chúc bạn học tốt :)

a,Tìm ĐKXĐ

\(2x+10\ne0\Rightarrow2\left(x+5\right)\ne0\Rightarrow x\ne-5\)

\(x\ne0\)

\(2x\left(x+5\right)\ne0\Rightarrow x\ne0;x\ne-5\)