K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
11 tháng 10 2021

\(f\left(x\right)=sin^4x+cos^4x=sin^4x+2sin^2xcos^2x+cos^4x-2sin^2xcos^2x\)

\(=\left(sin^2x+cos^2x\right)^2-\frac{1}{2}sin^22x=1-\frac{1}{2}sin^22x\)

Ta có: \(0\le sin^22x\le1\)

suy ra \(\frac{1}{2}\le f\left(x\right)\le1\).

7 tháng 12 2019

Chọn A

5 tháng 1 2020

Sử dụng công thức lượng giác để biến đổi hàm số về dạng:  f t = 2 - 3 4 t 1 - 1 2 t

Đặt  t = sin 2 2 x ; 0 ≤ t ≤ 1

Xét hàm số f t = 2 - 3 4 t 1 - 1 2 t = 3 t - 8 2 t - 8 ; t ∈ [0;1].

Ta có f ' t = - 8 2 t - 8 2 < 0 , ∀ t ∈ 0 ; 1 nên f(t) đồng biến trên [ 0;1 ].

Do đó M = f(0) = 1; m = f(1) = 5 6

Vậy  5 M - 6 m - 1 2017 = 5 - 5 - 1 2017 = -1

Đáp án D

 

31 tháng 12 2016

bạn nên đưa hàm số về dạng y=|sin8x| +3 rồi mới đánh giá

ta bắt đầu từ 0≤|sin8x|≤10≤|sin8x|≤1

⇔0+3≤y=|sin8x|+3≤1+3⇔0+3≤y=|sin8x|+3≤1+3

3≤y≤43≤y≤4

vậy GTLN =4 đạt được khi sin8x =1

GTNN=3 đạt được khi sin8x =0

3 tháng 6 2017

Đáp án B

Đặt v6Kj9O46MbyS.png Ta có PBAYlo9ShbaK.png 

Tính được O6JaGapw1JZG.png

17 tháng 12 2019

14 tháng 7 2019

Chọn B

10 tháng 9 2019

Đáp án C

27 tháng 5 2018

19 tháng 6 2018

Đáp án A

2 tháng 3 2018

Đáp án là D.

Ta có:

y = sin 4 x + cos 2 x + 2 y = sin 4 x − sin 2 x + 3

Đăt  t = sin 2 x , t ∈ 0 ; 1

f ( t ) = t 4 − t 2 + 3 ⇒ f ' ( t ) = 4 t 3 − 2 t ⇒ f ' ( t ) = 0 ⇔ t = 0 ∈ [ 0 ; 1 ] t = 2 2 ∈ [ 0 ; 1 ] t = − 2 2 ∉ [ 0 ; 1 ] ⇒ f ( 0 ) = 3 ; f ( 1 ) = 3 ; f 2 2 = 11 4

Vậy giá trị nhỏ nhất của hàm số đã cho là: 11 4