giải
\(sin^22x=cos^22x+cos3x\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giải phương trình : \(\frac{\sin^{10}x+\cos^{10}x}{4}=\frac{\sin^6x+\cos^6x}{4\cos^22x+\sin^22x}\) ?
a, \(f\left(-x\right)=sin^2\left(-2x\right)+cos\left(-3x\right)=sin^22x+cos3x=f\left(x\right)\)
\(\Rightarrow\) Là hàm số chẵn.
a)\(pt\Leftrightarrow\frac{1-cos8x}{2}+\frac{1-cos6x}{2}=\frac{1-cos4x}{2}+\frac{1-cos2x}{2}\)
\(\Leftrightarrow cos2x+cos4x=cos6x+cos8x\)
\(\Leftrightarrow2cos3x\cdot cosx=2cos7x\cdot cosx\)
\(\Leftrightarrow2cos\left(cos3x-cos7x\right)=0\)
\(\Leftrightarrow2cosx\cdot\left(-2\right)\cdot sin5x\cdot sin\left(-2x\right)=0\)
\(\Leftrightarrow cosx\cdot sin2x\cdot sin5x=0\)
\(\Leftrightarrow sin2x\cdot sin5x=0\)(do sin2x=0 <=>2sinx*cosx=0 gồm th cosx=0 r`)
\(\Leftrightarrow\left[\begin{array}{nghiempt}sin2x=0\\sin5x=0\end{array}\right.\)\(\Rightarrow\left[\begin{array}{nghiempt}x=\frac{k\pi}{2}\\x=\frac{k\pi}{5}\end{array}\right.\)\(\left(k\in Z\right)\)
b)\(pt\Leftrightarrow1-cos2x+1-cos4x=1+cos6x+1+cos8x\)
\(\Leftrightarrow cos2x+cos8x+cos4x+cos6x=0\)
\(\Leftrightarrow cos10x\cdot cos6x+cos10x\cdot cos2x=0\)
\(\Leftrightarrow cos10x\left(cos6x+cos2x\right)=0\)
\(\Leftrightarrow cos10x\cdot cos8x\cdot cos4x=0\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}cos10x=0\\cos8x=0\\cos4x=0\end{array}\right.\)
\(\Leftrightarrow\left[\begin{array}{nghiempt}x=\frac{\pi}{20}+\frac{k\pi}{10}\\x=\frac{\pi}{16}+\frac{k\pi}{8}\\x=\frac{\pi}{8}+\frac{k\pi}{4}\end{array}\right.\)
1.Pt \(\Leftrightarrow cos\left(2x-\dfrac{\pi}{3}\right)=sin\left(x+\dfrac{\pi}{3}\right)\)
\(\Leftrightarrow cos\left(2x-\dfrac{\pi}{3}\right)=cos\left(\dfrac{\pi}{6}-x\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}2x-\dfrac{\pi}{3}=\dfrac{\pi}{6}-x+k2\pi\\2x-\dfrac{\pi}{3}=x-\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)\(\left(k\in Z\right)\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+\dfrac{k2\pi}{3}\\x=\dfrac{\pi}{6}+k2\pi\end{matrix}\right.\)\(\left(k\in Z\right)\)
\(\Rightarrow x=\dfrac{\pi}{6}+\dfrac{k2\pi}{3}\)\(\left(k\in Z\right)\)
2.\(sin^22x+cos^23x=1\)
\(\Leftrightarrow\dfrac{1-cos4x}{2}+\dfrac{1+cos6x}{2}=1\)
\(\Leftrightarrow cos6x=cos4x\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k\pi\\x=\dfrac{k\pi}{5}\end{matrix}\right.\)\(\left(k\in Z\right)\)\(\Rightarrow x=\dfrac{k\pi}{5}\)\(\left(k\in Z\right)\) (Gộp nghiệm)
Vậy...
3. \(Pt\Leftrightarrow\left(sinx+sin3x\right)+\left(sin2x+sin4x\right)=0\)
\(\Leftrightarrow2.sin2x.cosx+2.sin3x.cosx=0\)
\(\Leftrightarrow2cosx\left(sin2x+sin3x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\\sin3x=-sin2x\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\sin3x=sin\left(\pi+2x\right)\end{matrix}\right.\)(\(k\in Z\))
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=\pi+k2\pi\\x=\dfrac{k2\pi}{5}\end{matrix}\right.\)(\(k\in Z\))\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{2}+k\pi\\x=\dfrac{k2\pi}{5}\end{matrix}\right.\) (\(k\in Z\))
Vậy...
4. Pt\(\Leftrightarrow\dfrac{1-cos2x}{2}+\dfrac{1-cos4x}{2}=\dfrac{1-cos6x}{2}\)
\(\Leftrightarrow cos2x+cos4x=1+cos6x\)
\(\Leftrightarrow2cos3x.cosx=2cos^23x\)
\(\Leftrightarrow\left[{}\begin{matrix}cos3x=0\\cosx=cos3x\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+\dfrac{k\pi}{3}\\x=-k\pi\\x=\dfrac{k\pi}{2}\end{matrix}\right.\)\(\left(k\in Z\right)\)\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{6}+\dfrac{k\pi}{3}\\x=\dfrac{k\pi}{2}\end{matrix}\right.\)\(\left(k\in Z\right)\)
Vậy...
\(P=sin^{10}x+cos^{10}x-\dfrac{sin^6x+cos^6x}{sin^22x+4cos^22x}\)
\(=sin^{10}x+cos^{10}x-\dfrac{\left(sin^2x+cos^2x\right)^3-3sin^2x.cos^2x\left(sin^2x+cos^2x\right)}{4-3sin^22x}\)
\(=sin^{10}x+cos^{10}x-\dfrac{1-\dfrac{3}{4}sin^22x}{4-3sin^22x}\)
\(=sin^{10}x+cos^{10}x-\dfrac{1}{4}\)
\(\le sin^2x+cos^2x-\dfrac{1}{4}=\dfrac{3}{4}\)
\(maxP=\dfrac{3}{4}\Leftrightarrow\left\{{}\begin{matrix}sin^{10}x=sin^2x\\cos^{10}x=cos^2x\end{matrix}\right.\Leftrightarrow x=\dfrac{k\pi}{2}\)
b.
ĐKXĐ: \(x\ne\dfrac{k\pi}{2}\)
\(\sqrt{2}\left(sinx+cosx\right)=\dfrac{sinx}{cosx}+\dfrac{cosx}{sinx}\)
\(\Leftrightarrow\sqrt{2}\left(sinx+cosx\right)=\dfrac{1}{sinx.cosx}\)
Đặt \(sinx+cosx=t\Rightarrow\left|t\right|\le\sqrt{2}\)
\(sinx.cosx=\dfrac{t^2-1}{2}\)
Pt trở thành:
\(\sqrt{2}t=\dfrac{2}{t^2-1}\Rightarrow t^3-t-\sqrt{2}=0\)
\(\Leftrightarrow\left(t-\sqrt{2}\right)\left(t^2+\sqrt{2}t+1\right)=0\)
\(\Leftrightarrow t=\sqrt{2}\)
\(\Leftrightarrow\sqrt{2}sin\left(x+\dfrac{\pi}{4}\right)=\sqrt{2}\)
\(\Leftrightarrow sin\left(x+\dfrac{\pi}{4}\right)=1\)
\(\Leftrightarrow x+\dfrac{\pi}{4}=\dfrac{\pi}{2}+k2\pi\)
\(\Leftrightarrow x=\dfrac{\pi}{4}+k2\pi\)
a.
\(\Leftrightarrow sin^22x+cos^22x+\sqrt{3}sin4x+1+cos4x=0\)
\(\Leftrightarrow cos4x+\sqrt{3}sin4x=-2\)
\(\Leftrightarrow\dfrac{1}{2}cos4x+\dfrac{\sqrt{3}}{2}sin4x=-1\)
\(\Leftrightarrow cos\left(4x-\dfrac{\pi}{3}\right)=-1\)
\(\Leftrightarrow4x-\dfrac{\pi}{3}=\pi+k2\pi\)
\(\Leftrightarrow x=\dfrac{\pi}{3}+\dfrac{k\pi}{2}\)
\(2-2cos^22x=cos2x+1\)
\(\Leftrightarrow2cos^22x+cos2x-1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cos2x=1\\cos2x=-\dfrac{1}{2}\end{matrix}\right.\)
\(\Leftrightarrow...\)
c/
\(\Leftrightarrow1-sin^22x+\sqrt{3}sin2x+sin2x=1+\sqrt{3}\)
\(\Leftrightarrow-sin^22x+\left(\sqrt{3}+1\right)sin2x-\sqrt{3}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sin2x=1\\sin2x=\sqrt{3}\left(l\right)\end{matrix}\right.\)
\(\Leftrightarrow2x=\frac{\pi}{2}+k2\pi\)
\(\Leftrightarrow x=\frac{\pi}{4}+k\pi\)
d/
\(\Leftrightarrow4\left(1-2sin^2x\right)+5sinx=4\left(3sinx-4sin^3x\right)+5\)
\(\Leftrightarrow16sin^3x-8sin^2x-7sinx-1=0\)
\(\Leftrightarrow\left(sinx-1\right)\left(4sinx+1\right)^2=0\)
\(\Leftrightarrow\left[{}\begin{matrix}sinx=1\\sinx=-\frac{1}{4}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\frac{\pi}{2}+k2\pi\\x=arcsin\left(-\frac{1}{4}\right)+k2\pi\\x=\pi-arcsin\left(-\frac{1}{4}\right)+k2\pi\end{matrix}\right.\)
b/
\(\Leftrightarrow3cos^2x+4sin\left(2\pi-\frac{\pi}{2}-x\right)+1=0\)
\(\Leftrightarrow3cos^2x-4sin\left(x+\frac{\pi}{2}\right)+1=0\)
\(\Leftrightarrow3cos^2x-4cosx+1=0\)
\(\Leftrightarrow\left[{}\begin{matrix}cosx=1\\cosx=\frac{1}{3}\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=k2\pi\\x=\pm arcos\left(\frac{1}{3}\right)+k2\pi\end{matrix}\right.\)
sin2 2x = cos2 2x + cos3x
\(\Leftrightarrow\)\(\frac{1\:-\:cos\:4x}{2}\)= \(\frac{1+cos\:4x}{2}\)+ \(\)cos3x
\(\Leftrightarrow\) 1- cos4x - 1 - cos4x= 2cos3x
\(\leftrightarrow\) -2cos4x = 2cos3x
\(\leftrightarrow\) cos4x= -cos3x
\(\leftrightarrow\) cos4x = cos( π -3x )