S=1*2*3+2*3*5+...+n*(n+1)*(2n+1).tính tổng S
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a:
n = int(input("Nhập số nguyên n: "))
S = 0
for i in range(1, n+1):
S += i
print("Tổng S =", S)
Câu b:
n = int(input("Nhập số nguyên n: "))
S = 0
for i in range(1, n, 2):
S += i
print("Tổng S =", S)
Câu c:
def calc_sum(n):
s=0
for i in range(1,n+1):
s += 2*i
return s
n = int(input("Nhập vào số n: "))
print("Tổng S=2+4+6+...2n là:",calc_sum(n))
n = int(input("Nhập số nguyên n: "))
S = 0
for i in range(1, n+1):
S += i
print("Tổng S =", S)
Câu b:
n = int(input("Nhập số nguyên n: "))
S = 0
for i in range(1, n, 2):
S += i
print("Tổng S =", S)
Câu c:
def calc_sum(n):
s=0
for i in range(1,n+1):
s += 2*i
return s
n = int(input("Nhập vào số n: "))
print("Tổng S=2+4+6+...2n là:",calc_sum(n))
S1 = \(\frac{N.\left(N+1\right)}{2}\)
S2 = 2S1 = N.(N+1)
S3 = \(\frac{\left(2n-1\right).2n.\left(2n+1\right)}{6}\)
Bài 1:
(1 - 2 + 3 - 4+ ... - 96 + 97 - 98 + 99).\(x\) = 2000
Đặt A = 1 - 2 + 3 - 4 +...- 96 + 97 - 98 + 99
Xét dãy số: 1; 2; 3; 4;...;96; 97; 98; 99
Dãy số trên là dãy số cách đều với khoảng cách là: 2 - 1 = 1
Số số hạng của dãy số trên là: (99 - 1): 1 + = 99
Vì 99 : 2 = 49 dư 1
Nhóm 2 số hạng liên tiếp của A thành một nhóm thì A là tổng của 49 nhóm và 99
A = 1 - 2 + 3 - 4 + ... - 96 + 97 - 98 + 99
A = (1- 2) + (3 - 4)+ ...+ (97 - 98) + 99
A = - 1 + (-1) + (-1) +...+ (-1) + 99
A = -1.49 + 99
A = -49 + 99
A = 50 Thay A =
Vậy 50.\(x\) = 2000
\(x\) = 2000 : 50
\(x\) = 40
2, n và n + 1
Gọi ước chung lớn nhất của n và n + 1 là d
Ta có: n ⋮ d; n + 1 ⋮ d
⇒ n + 1 - n ⋮ d
1 ⋮ d
d = 1
Vậy ƯCLN(n +1; n) = 1 Hay n + 1; n là hai số nguyên tố cùng nhau (đpcm)
#include <bits/stdc++.h>
using namespace std;
long long s,i,n;
int main()
{
cin>>n;
s=0;
for (i=1; i<=n; i++)
if (i%2==1) s=s+i*i;
cout<<s;
return 0;
}
a,
\(2^2=\left(1+1\right)^2=1^2+2.1+1\)
\(3^2=\left(2+1\right)^2=2^2+2.2+1\)
....
\(\left(n+1\right)^2=n^2+2n+1\)
Cộng theo từng vế của các đẳng thức:
\(2^2+3^2+...+\left(n+1\right)^2=1^2+2^2+...+n^2+2\left(1+2+...+n\right)+n\)
\(\Leftrightarrow\left(n+1\right)^2=1+2S+n\)
\(\Leftrightarrow2S=\left(n+1\right)^2-\left(n+1\right)\)
\(\Leftrightarrow2S=\left(n+1\right)n\)
\(\Leftrightarrow S=\frac{n\left(n+1\right)}{2}\)
b, Tương tự a
\(2^3=\left(1+1\right)^3=1^3+3.1^2+3.1+1\)
\(3^3=\left(2+1\right)^3=2^3+3.2^2+3.2+1\)
...
\(\left(n+1\right)^3=n^3+3n^2+3n+1\)
Cộng theo từng vế của các đẳng thức:
\(2^3+3^3+...+\left(n+1\right)^3=1^3+2^3+...+n^3+3\left(1^2+2^2+...+n^2\right)+3\left(1+2+...+n\right)+n\)
\(\Leftrightarrow\left(n+1\right)^3=1+3S_1+3S+n\)
\(\Leftrightarrow\left(n+1\right)^3-\left(n+1\right)-3S=3S_1\)
\(3S_1=n\left(n+1\right)\left(n+2\right)-\frac{3n\left(n+1\right)}{2}\)
\(\Leftrightarrow3S_1=\frac{n\left(n+1\right)\left(2n+1\right)}{2}\)
\(\Leftrightarrow S_1=\frac{n\left(n+1\right)\left(2n+1\right)}{6}\)
\(1+a^2+a^4+a^6+.....+a^{2n}\)
\(\Rightarrow a^2.S1=a^2+a^4+a^6+a^8+.....+a^{2\left(1+n\right)}\)
\(\Rightarrow a^2.S1-S1=\left(a^2+a^4+....+2^{2\left(1+n\right)}\right)-\left(1+a^2+a^4+....+2^{2n}\right)\)
\(\Rightarrow S1\left(a-1\right)\left(a+1\right)=a^{2\left(1+n\right)}-1\)
\(\Rightarrow S1=\frac{a^{2\left(1+n\right)}-1}{\left(a-1\right)\left(a+1\right)}\)
\(n\left(n+1\right)\left(2n+1\right)=\frac{2n\left(2n+1\right)\left(2n+2\right)}{4};4S=...\)