x chia y =y chia (-5) và x-y +-7
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{3}=\frac{y}{5}=\frac{x+y}{3+5}=\frac{16}{8}=2\)
=>x=2.3=6
y=2.5=10
Vậy x=6 và y=10
Câu 2:
x:2=y:(-5) <=> \(\frac{x}{2}=\frac{y}{-5}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x}{2}=\frac{y}{-5}=\frac{x-y}{2-\left(-5\right)}=\frac{-7}{2+5}=\frac{-7}{7}=-1\)
=>x=(-1).2=-2
y=(-1).(-5)=5
Vậy x=-2 và y=5
áp dụng tính chất dãy tỉ số bằng nhau
\(\frac{x}{3}=\frac{y}{5}\)
\(=\frac{x+y}{3+5}\)
thay x+y=16 vào được
\(\frac{x}{3}=\frac{y}{5}\)
\(=\frac{x+y}{3+5}\)
=\(\frac{16}{8}\)
=2
=>x=2.3=6
y=2.5=10
áp dụng tính chất dãy tỉ số bằng nhau
b.\(\frac{x}{2}=\frac{y}{-5}\)
\(=\frac{x-y}{2-\left(-5\right)}\)
\(thayx-y=-7\)
\(\frac{x}{2}=\frac{y}{-5}\)
\(=\frac{x-y}{2-\left(-5\right)}\)
\(=\frac{-7}{7}\)
\(=-1\)
\(=>x=\left(-1\right).2=\left(-2\right)\)
\(y=\left(-1\right).\left(-5\right)=5\)
1) *Để 7x1y chia hết cho 2 và 5 thì y = 0 => 7x10
Do đó x = 0;1;2;3;4;5;6;7;8;9
2) Chia hết cho 45 là chia hết cho 5 và 9
*Để 3x59y chia hết cho 5 thì y = 5 ; 0 => 3x595 ; 3x590
*Để 3x595 ; 3x590 chia hết cho 9 thì x = 5 ; 1
a. \(\left(x+8\right)⋮\left(x+4\right)\)
\(\Rightarrow\left(x+4\right)+4⋮\left(x+4\right)\)
Mà \(\left(x+4\right)⋮\left(x+4\right)\)
\(\Rightarrow4⋮\left(x+4\right)\)
\(\Rightarrow x+4\in\text{Ư} \left(4\right)=\left\{1;2;4\right\}\)
Ta có 3 trường hợp :
TH1 : \(x+4=1\Rightarrow x\notin N\) ( Loại )
TH2 : \(x+4=2\Rightarrow x\notin N\)(Loại )
TH3 : \(x+4=4\Rightarrow x=0\)
Vậy x = 0
a,Vì : \(x+8⋮x+2\)
Mà : \(x+2⋮x+2\)
\(\Rightarrow\left(x+8\right)-\left(x+2\right)⋮x+2\Rightarrow x+8-x-2⋮x+2\)
\(\Rightarrow6⋮x+2\Rightarrow x+2\inƯ\left(6\right)\)
Mà : \(Ư\left(6\right)=\left\{1;2;3;6\right\}\) ; \(x+2\ge2\Rightarrow x+2\in\left\{2;3;6\right\}\)
\(\Rightarrow x\in\left\{0;1;4\right\}\)
Vậy ...
b,Ta có : \(2y+7⋮y-1\) ; \(y-1⋮y-1\Rightarrow2\left(y-1\right)⋮y-1\Rightarrow2y-2⋮y-1\)
\(\Rightarrow\left(2y+7\right)-\left(2y-2\right)⋮y-1\Rightarrow2y+7-2y+2⋮y-1\)
\(\Rightarrow9⋮y-1\Rightarrow y-1\in\left\{1;3;9\right\}\Rightarrow y\in\left\{2;4;10\right\}\)
Vậy ...
c, Vì : \(x\in N\Rightarrow x-5\in N\)
\(y\in N\Rightarrow y+3\in N\left(y+3\ge3\right)\)
\(\Rightarrow x-5,y+3\inƯ\left(7\right)\)
Mà : \(Ư\left(7\right)=\left\{1;7\right\};y+3\ge3\)
\(\Rightarrow x-5=1\Rightarrow x=6;y+3=7\Rightarrow y=4\)
Vậy ...
9x2 + 5y chia hết cho 17
mà ƯCLN(4 ; 17) = 1
nên 4(9x2 + 5y) chia hết cho 17
hay 36x2 + 20y chia hết cho 17
mà 34x2 chia hết cho 17 ; 17y chia hết cho 17
nên 36x2 + 20y - 34x2 - 17y = 2x2 + 3y chia hết cho 17
***
3x2 - 7y chia hết cho 23
mà ƯCLN(17 ; 23) = 1
nên 17(3x2 - 7y) chia hết cho 23
hay 51x2 - 119y chia hết cho 23
mà 46x2 chia hết cho 23 ; 115y chia hết cho 23
nên 51x2 - 119y - 46x2 + 115y = 5x2 - 4y chia hết cho 23
Chúc bạn học tốt ^^
6 \(n^5+5n=n^5-n+6n=n\left(n^4-1\right)+6n=n\left(n^2-1\right)\left(n^2+1\right)+6n\)
\(=n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)+6n\)
vì n,n-1 là 2 số nguyên lien tiếp \(\Rightarrow n\left(n-1\right)⋮2\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\)
n,n-1,n+1 là 3 sô nguyên liên tiếp \(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮3\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮3\)
\(\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)⋮2\cdot3=6\)
\(6⋮6\Rightarrow6n⋮6\Rightarrow n\left(n-1\right)\left(n+1\right)\left(n^2+1\right)-6n⋮6\Rightarrow n^5+5n⋮6\)(đpcm)
7 \(n\left(2n+7\right)\left(7n+1\right)=n\left(2n+7\right)\left(7n+7-6\right)=7n\left(n+1\right)\left(2n+7\right)-6n\left(2n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4+3\right)-6n\left(2n+7\right)\)
\(=7n\left(n+1\right)\left(2n+4\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)
\(=14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)\)
n,n+1,n+2 là 3 sô nguyên liên tiếp dựa vào bài 6 \(\Rightarrow n\left(n+1\right)\left(n+2\right)⋮6\Rightarrow14n\left(n+1\right)\left(n+2\right)⋮6\)
\(21⋮3;n\left(n+1\right)⋮2\Rightarrow21n\left(n+1\right)⋮3\cdot2=6\)
\(6⋮6\Rightarrow6n\left(2n+7\right)⋮6\)
\(\Rightarrow14n\left(n+1\right)\left(n+2\right)+21n\left(n+1\right)-6n\left(2n+7\right)⋮6\)
\(\Rightarrow n\left(2n+7\right)\left(7n+1\right)⋮6\)(đpcm)
......................?
mik ko biết
mong bn thông cảm
nha ................
Bài giải
Ta có: 2x + 3y \(⋮\)7 và x + y \(⋮\)7
Suy ra 2(x + y) + y \(⋮\)7
Vì 2(x + y) + y \(⋮\)7 và 2(x + y) \(⋮\)7
Nên y \(⋮\)7
Vì x + y \(⋮\)7 và y\(⋮\)7
Nên x \(⋮\)7
Suy ra x và y đều chia hết cho 7.
a) Ta có:\(\frac{x+8}{x+2}=\frac{x+2+6}{x+2}=1+\frac{6}{x+2}\)
Để (x+8) chia hết cho (x+2)
Suy ra 6 chia hết cho x+2
Do đó x+2 thuộc Ư(6)
Vậy Ư(6) là:[1,-1,2,-2,3,-3,6,-6]
Do đó ta có bảng sau:
x+2 | -6 | -3 | -2 | -1 | 1 | 2 | 3 | 6 |
x | ko TM | ko TM | ko TM | ko TM | ko TM | 0 | 1 | 4 |
Vậy x=0;1;4
nguyenbuikimtrang
Đề bạn ghi rõ ra được không ! Mình không hiểu !