K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 8 2019

3n + 3 - 3n + 1 = 1944

=> 3n . 33 - 3n . 3 = 1944

=> 3n.(33 - 3) = 1944

=> 3n.24 = 1944

=> 3n      = 1944 : 24

=> 3n      = 81

=> 3n = 34

=> n = 4

29 tháng 8 2019

3n + 3 - 3n + 1 = 1944

3n ( 33 - 3 ) = 1944

3n . 24 = 1944

3n = 34

=> n = 4

Vậy n = 4

=))

tham khảo:

 

\(a) 2+5+8+...+(3n−1)=n(3n+1)2 (1) Đặt Sn=2+5+8+...+(3n−1) Với n=1 ta có: S1=2=1(3.1+1)2 Giả sử (1) đúng với n=k(k≥1), tức là Sk=2+5+8+...+(3k−1)=k(3k+1)2 Ta chứng minh (1) đúng với n=k+1 hay Sk+1=(k+1)(3k+4)2 Thật vậy ta có: Sk+1=2+5+8+...+(3k−1)+[3(k+1)−1]=Sk+3k+2=k(3k+1)2+3k+2=3k2+k+6k+42=3k2+7k+42=(k+1)(3k+4)2 Vậy (1) đúng với mọi k≥1 hay (1) đúng với mọi n∈N∗ b) 3+9+27+...+3n=12(3n+1−3) (2) Đặt Sn=3+9+27+...+3n=12(3n+1−3) Với n=1, ta có: S1=3=12(32−3) (hệ thức đúng) Giả sử (2) đúng với n=k(k≥1) tức là Sk=3+9+27+...+3k=12(3k+1−3) Ta chứng minh (2) đúng với n=k+1, tức là chứng minh Sk+1=12(3k+2−3) Thật vậy, ta có: Sk+1=3+9+27+...+3k+1=Sk+3k+1=12(3k+1−3)+3k+1=32.3k+1−32=12(3k+2−3)(đpcm) Vậy (2) đúng với mọi k≥1 hay đúng với mọi n∈N∗\)

15 tháng 10 2023

1:

\(\lim\limits_{n\rightarrow\infty}\dfrac{3n^5+3n^3-1}{n^3-2n}=\lim\limits_{n\rightarrow\infty}\dfrac{n^5\left(3+\dfrac{3}{n^2}-\dfrac{1}{n^5}\right)}{n^3\left(1-\dfrac{2}{n^2}\right)}\)

\(=\lim\limits_{n\rightarrow\infty}n^2\cdot3=+\infty\)

2: \(\lim\limits_{n\rightarrow\infty}\dfrac{3n^7+3n^5-n}{3n^2-2n}=\lim\limits_{n\rightarrow\infty}\dfrac{3n^6+3n^4-1}{3n-2}\)

\(=\lim\limits_{n\rightarrow\infty}\dfrac{n^6\left(3+\dfrac{3}{n^2}-\dfrac{1}{n^6}\right)}{n\left(3-\dfrac{2}{n}\right)}=\lim\limits_{n\rightarrow\infty}n^5=+\infty\)

12 tháng 2 2022

\(a,lim\dfrac{2n^2+1}{3n^3-3n+3}\)

\(=lim\dfrac{\dfrac{2}{n}+\dfrac{1}{n^3}}{3-\dfrac{3}{n^2}+\dfrac{3}{n^3}}=0\)

NV
12 tháng 2 2022

\(\lim\dfrac{-3n^3+1}{2n+5}=\lim\dfrac{-3n^2+\dfrac{1}{n}}{2+\dfrac{5}{n}}=\dfrac{-\infty}{2}=-\infty\)

\(\lim\dfrac{n^3-2n+1}{-3n-4}=\lim\dfrac{n^2-2+\dfrac{1}{n}}{-3-\dfrac{4}{n}}=\dfrac{+\infty}{-3}=-\infty\)

NM
25 tháng 8 2021

Chắc có lẽ bạn định làm như này:

\(\frac{1}{\left(3n+2\right)\left(3n+5\right)}=\frac{3}{3\left(3n+2\right)\left(3n+5\right)}=\frac{\left(3n+5\right)-\left(3n+2\right)}{3\left(3n+2\right)\left(3n+5\right)}=\frac{1}{3}\left[\frac{1}{3n+2}-\frac{1}{3n+5}\right]\)

6 tháng 1 2023

`a)lim[5n^3-3n^2+1]/[1-3n^3]`

`=lim[5-3/n+1/[n^3]]/[1/[n^3]-3]`

`=5/[-3]=-5/3`

_____________________________
`b)lim[-9n+5]/[3n-3]`

`=lim[-9+5/n]/[3-3/n]`

`=[-9]/3=-3`