K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

28 tháng 8 2019

Áp dụng tính chất dãy tỉ số bằng nhau :

\(\frac{y}{x-z}=\frac{x+y}{z}=\frac{x}{y}=\frac{y+x+y+x}{x-z+z+y}=\frac{2\left(x+y\right)}{x+y}=2\)

Suy ra : \(\frac{x}{y}=2\)

Vậy\(\frac{x}{y}=2\)

chúc bn học tốt!

4 tháng 8 2021

còn cách làm khác không ạ?

 

5 tháng 3 2020

Hỏi đáp Toán

19 tháng 8 2016

Ta có: |x+1|>=0 với mọi x

           |y+2|>=0 với mọi y

           |x-y+z|>=0 với mọi x,y,z

=>|x+1|+|y+2|+|x-y+z|>=0+0+0 với mọi x,y,z

Mà |x+1|+|y+2|+|x-y+z|=0

=>|x+1|=|y+2|=|x-y+z|=0

=>x+1=y+2=x-y+z=0

=>x=-1 và y=-2 và -1-(-2)+z=0

=>x=-1,y=-2 và z=-1

27 tháng 8 2020

tham khảo [Toán 12] Chứng minh bất đẳng thức: $x^3+y^3+z^3 \ge x+y+z$

27 tháng 8 2020

lỗi link ấy =)) bạn vào thống kê hỏi đáp của mình để xem link nhé

3 tháng 1 2017

chệu nghe

21 tháng 8 2021

Áp dụng tc của dãy tỉ số = nhau ta được :

\(\frac{x}{y+z+1}=\frac{y}{x+z+1}=\frac{z}{x+y-2}=\frac{x+y+z}{y+z+x+z+x+y}=\frac{x+y+z}{2\left(x+y+z\right)}=\frac{1}{2}\)

\(< =>x+y+z=\frac{1}{2}\left(1\right)\)và \(\hept{\begin{cases}2x=y+z+1\\2y=x+z+1\\2z=x+y-2\end{cases}}\left(2\right)\)

Từ (1) suy ra \(\hept{\begin{cases}x+y=\frac{1}{2}-z\\y+z=\frac{1}{2}-x\\z+x=\frac{1}{2}-y\end{cases}}\)khi đó hệ 3 pt (2) tương đương \(\hept{\begin{cases}2x=\frac{3}{2}-x\\2y=\frac{3}{2}-y\\2z=-z-\frac{3}{2}\end{cases}}\)

\(< =>\hept{\begin{cases}3x=\frac{3}{2}\\3y=\frac{3}{2}\\3z=-\frac{3}{2}\end{cases}}< =>\hept{\begin{cases}x=\frac{1}{2}\\y=\frac{1}{2}\\z=-\frac{1}{2}\end{cases}}\)

Vậy ...

10 tháng 2 2022

undefinedbạn Phan Nghĩa cho mình hỏi chỗ này sao bằng được vậy bạn
theo t/c dãy tỉ số bằng nhau thì ta phải được x+y+z/y+z+1+x+z+1+x+y-2 chứ
mình cũng ko hiểu bài của bạn lắm=))