K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2019

Có lẽ đề là n nguyên dương:v

Với \(n=1\) thì \(\frac{1}{1+1}+\frac{1}{2\cdot1}=1>\frac{1}{2}\)

Giả sử bài toán đúng với \(n=k\) khi đó:\(A_k=\frac{1}{k+1}+\frac{1}{k+2}+\frac{1}{k+3}+....+\frac{1}{2k}\)

Ta cần chứng minh bài toán đúng với \(n=k+1\) thật vậy:
\(A_{k+1}=\frac{1}{k+2}+\frac{1}{k+3}+\frac{1}{k+4}+....+\frac{1}{2k+2}\)

\(A_{k+1}=\left(\frac{1}{k+1}+\frac{1}{k+2}+\frac{1}{k+3}+.....+\frac{1}{2k}\right)+\left(\frac{1}{2k+1}+\frac{1}{2k+2}-\frac{1}{k+1}\right)\)

\(A_{k+1}=A_k+\left(\frac{1}{2k+1}-\frac{1}{2k+2}\right)>\frac{1}{2}\) vì \(A_k>\frac{1}{2};\frac{1}{2k+1}-\frac{1}{2k+2}>0\) với mọi k nguyên dương.

Vậy bài toán được chứng minh. 

11 tháng 2 2019

Số số hạng của tổng trên là:

[ 2n - (n+1) ] :1 +1 = n số hạng

Ta có

n+1 ; n +2 ; n +3 ; ... ; 2n -1 \(\le\) 2n

\(\Rightarrow\dfrac{1}{n+1};\dfrac{1}{n+2};\dfrac{1}{n+3};...;\dfrac{1}{2n-1}\ge\dfrac{1}{2n}\)

\(\Rightarrow\dfrac{1}{n+1}+\dfrac{1}{n+2}+\dfrac{1}{n+3}+...+\dfrac{1}{2n}\ge\dfrac{1}{2n}+\dfrac{1}{2n}+\dfrac{1}{2n}+...+\dfrac{1}{2n}\)

(n phân số \(\dfrac{1}{2n}\))

= \(\dfrac{1}{2}\)

Vậy \(\dfrac{1}{n+1}+\dfrac{1}{n+2}+\dfrac{1}{n+3}+...+\dfrac{1}{2n}\ge\dfrac{1}{2}\)

23 tháng 1 2016

Nguyễn Minh Tâm đúng rồi nhưng dài thế

1/(n + 1) + 1/(n + 2) + ... + 1/(2n - 2) + 1/(2n - 1) + 1/(2n) > 13/24 (n ∈ N*) 

Với n = 1, ta có : 1/2 + 1/3 + ... + 1/2 > 13/24 (đúng) 

Giả sử bất đẳng thức đúng với n = k 

Nghĩa là : 1/(k + 1) + 1/(k + 2) + ... + 1/(2k - 2) + 1/(2k - 1) + 1/(2k) > 13/24 (1) 

Ta cần chứng minh bất đẳng thức đúng với n = k + 1 

Nghĩa là : 1/(k + 2) +1/(k + 3) + ... + 1/(2k) + 1/(2k + 1) + 1/(2k + 2) > 13/24 (2) 

<=> [1/(k + 1) + 1/(k + 2) + 1/(k + 3) + ... + 1/(2k)] + 1/(2k + 1) + 1/(2k + 2) - 1/(k + 1) > 13/24 

Ta chứng minh : 1/(2k + 1) + 1/(2k + 2) - 1/(k + 1) > 0 (3) 

<=> [2(k + 1) + (2k + 1) - 2(2k + 1)] / [2(2k + 1)(k + 1)] > 0 

<=>1 / [2(2k + 1)(k + 1)] > 0 (4) 

Vì k ∈ N* => [2(2k + 1)(k + 1)] > 0 => (4) đúng => (3) đúng 

Cộng (1) và (3) được : 

1/(k + 2) +1/(k + 3) + ... + 1/(2k) + 1/(2k + 1) + 1/(2k + 2) > 13/24 

=> (2) đúng 

Theo quy nạp => Điều cần chứng minh là đúng => đpcm

Đúng không? 

12 tháng 2 2019

TA CÓ :\(\frac{1}{n+1}>\frac{1}{2n},\frac{1}{n+2}>\frac{1}{2n},....\)\(\Rightarrow\frac{1}{n+1}+\frac{1}{n+2}+....+\frac{1}{2n}>\frac{1}{2n}+\frac{1}{2n}+...+\frac{1}{2n}\)(n số)

=\(\frac{n}{2n}=\frac{1}{2}\left(đcpm\right)\)

17 tháng 3 2018

\(a,\frac{1}{n+1}+\frac{1}{n+2}+......+\frac{1}{2n}\)

\(>\frac{1}{2n}+\frac{1}{2n}+.......+\frac{1}{2n}\)                 có \(n\) số \(\frac{1}{2n}\)

\(=n.\frac{1}{2n}=\frac{1}{2}\)

\(b,\frac{1}{1^2}+\frac{1}{2^2}+......+\frac{1}{n^2}< \frac{1}{1}+\frac{1}{1.2}+........+\frac{1}{\left(n-1\right).n}\)

\(=1+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+.......+\frac{1}{n-1}-\frac{1}{n}\)

\(=2-\frac{1}{n}\)

14 tháng 4 2017

Bạn xem hình mình trình bày:

Đại số lớp 7Đại số lớp 7ćx