K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 8 2019

Câu hỏi của nguyễn đình thành - Toán lớp 9 - Học toán với OnlineMath

27 tháng 8 2019

Anh tham khảo tại đây:

Câu hỏi của Thanh Bách - Toán lớp 8 - Học toán với OnlineMath

4 tháng 12 2014

Thế nếu n=1 thì 4n+n4=41+14=5

11 tháng 3 2016

đơn giản mà!

\(2^n+1\) là SNT nên \(n=2^x\) Do đó, \(2^n-1=2^{2^x}-1\)chia hết cho 3

6 tháng 11 2018

Nếu nn chẵn thì cái tổng chia hết cho 2

Nếu nn lẻ thì

Phân tích nhân tử

Ta có n4+4n=(n2)2+(2n)2+2.n2.2n−2.n2.2n=(n2+2n)2−n2.2n+1=(n2+2n−n.2n+12)(n2+2n+n.2n+12)n4+4n=(n2)2+(2n)2+2.n2.2n−2.n2.2n=(n2+2n)2−n2.2n+1=(n2+2n−n.2n+12)(n2+2n+n.2n+12)

Ta chỉ cần chứng minh cả 2 thừa số đều lớn hơn 1 là được

Tức là ta chứng minh n2+2n−n.2n+12≥1n2+2n−n.2n+12≥1

Tương đương với n2+2n+1−2n.2n+12+n2≥2n2+2n+1−2n.2n+12+n2≥2 ( nhân 2 cho 2 vế )

BĐT <=>(n−2n+12)2+n2≥2<=>(n−2n+12)2+n2≥2 đúng với nn lẻ và n≥3n≥3 

Vậy, ta có điều phải chứng minh

21 tháng 4 2019

\(^{n^4}\)+4

=(n^2)^2+4n^2+4-4n^2

=(n^2+2)^2-(2n)^2

=(n^2-2n+2)(n^2+2n+2)

vi n>1 n la so tu nhien nen n^2+- 2n +2 khac 1 va n^4+1

do do n^4 +1 la hop so

15 tháng 2 2017

Với n chẵn thì:

\(\left(n^4+4^n\right)⋮2\)\(\left(n^4+4^n\right)>2\) nên là hợp số

Với n lẻ thì:

\(4^n\equiv-1\left(mod5\right)\)

\(n^4\equiv1\left(mod5\right)\)

\(\Rightarrow\left(n^4+4^n\right)\equiv0\left(mod5\right)\)

\(\left(n^4+4^n\right)>5\) nên \(\left(n^4+4^n\right)\) là hợp số

Vậy với mọi n tự nhiên và \(n>1\) thì A là hợp số

AH
Akai Haruma
Giáo viên
12 tháng 2 2018

Lời giải:

Ta có:

\(n^4+4=(n^2)^2+2^2=(n^2)^2+2^2+2.2.n^2-2.2.n^2\)

\(=(n^2+2)^2-(2n)^2\)

\((n^2+2-2n)(n^2+2+2n)\)

Với \(n\in \mathbb{N}; n>1\) thì \(n^2+2-2n; n^2+2+2n>1\)

Do đó \(n^4+4=(n^2+2-2n)(n^2+2+2n)\) là hợp số

Ta có đpcm.