K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 8 2019

Hệ số bất định thử xem sao nha ! Check luôn nha Nguyễn Tấn Phát ~

Nháp:

Ta nhẩm nghiệm được \(a=-3\) nên khi phân tích nó sẽ có nhân tử là \(x+3\)

Giả sử khi phân tích thành nhân tử nó sẽ có dạng:\(\left(x+3\right)\left(x^3+ax^2+bx+c\right)\)

\(=x^4+ax^3+bx^2+cx+3x^3+3ax^2+3bx+3c\)

\(=x^4+\left(a+3\right)x^3+\left(3a+b\right)x^2+\left(c+3b\right)x+3c\)

Mà \(\left(x+3\right)\left(x^3+ax^2+bx+c\right)=x^4+4x^3+5x^2+7x+3\)

Cân bằng hệ số ta được:

\(a=1;b=2;c=1\)

Khi đó \(x^4+4x^3+5x^2+7x+3=\left(x+3\right)\left(x^3+x^2+2x+1\right)\)

Bài làm

Ta có:

\(x^4+4x^3+5x^2+7x+3\)

\(=\left(x^4+x^3+2x^2+x\right)+\left(3x^3+3x^2+6x+3\right)\)

\(=x\left(x^3+x^2+2x+1\right)+3\left(x^3+x^2+2x+1\right)\)

\(=\left(x+3\right)\left(x^3+x^2+2x+1\right)\)

P/S:Mik nghĩ đến đây là hết rồi:3

28 tháng 10 2018

a/ \(x^4+4x^2-5\)

\(=\left(x^4+4x^2+4\right)-9\)

\(=\left(x^2+2\right)^2-9\)
\(=\left(x^2+2-3\right)\left(x^2+2+3\right)\)

\(=\left(x^2-1\right)\left(x^2+5\right)\)

b/ \(5x^3-5x^2y-10x^2+10xy\)

\(=\left(5x^3-10x^2\right)-\left(5x^2y-10xy\right)\)

\(=5x^2\left(x-2\right)-5xy\left(x-2\right)\)

\(=\left(x-2\right)\left(5x^2-5xy\right)\)

\(=\left(x-2\right)5x\left(x-y\right)\)

a) Ta có: \(8x^2+30x+7\)

\(=8x^2+28x+2x+7\)

\(=4x\left(2x+7\right)+\left(2x+7\right)\)

\(=\left(2x+7\right)\left(4x+1\right)\)

b) Ta có: \(4x^3-12x^2+9x\)

\(=x\left(4x^2-12x+9\right)\)

\(=x\left(2x-3\right)^2\)

c) Ta có: \(\left(2x+1\right)^2-\left(x-1\right)^2\)

\(=\left(2x+1-x+1\right)\left(2x+1+x-1\right)\)

\(=\left(x+2\right)\cdot3x\)

d) Ta có: \(ab+c^2-ac-bc\)

\(=\left(ab-bc\right)+\left(c^2-ac\right)\)

\(=b\left(a-c\right)+c\left(c-a\right)\)

\(=b\left(a-c\right)-c\left(a-c\right)\)

\(=\left(a-c\right)\left(b-c\right)\)

e) Ta có: \(4x^2-y^2+1-4x\)

\(=\left(4x^2-4x+1\right)-y^2\)

\(=\left(2x-1\right)^2-y^2\)

\(=\left(2x-1-y\right)\left(2x-1+y\right)\)

f) Ta có: \(6x^2-7x-20\)

\(=6x^2-15x+8x-20\)

\(=3x\left(2x-5\right)+4\left(2x-5\right)\)

\(=\left(2x-5\right)\left(3x+4\right)\)

16 tháng 2 2021

\(4x^3-12x^2+9x=x\left(4x^2-12x+9\right)=x\left(2x-3\right)^2\)\(\left(2x+1\right)^2-\left(x-1\right)^2=\left(2x+1-x+1\right)\left(2x+1+x-1\right)=\left(x+2\right)3x\)

\(ab+c^2-ac-bc=ab-ac-bc+c^2=a\left(b-c\right)-c\left(b-c\right)=\left(b-c\right)\left(a-c\right)\)

\(4x^2-y^2+1-4x=4x^2-4x+1-y^2=\left(2x-1\right)^2-y^2=\left(2x-y-1\right)\left(2x+y-1\right)\)

\(6x^2-7x-20=6x^2-15x+8x-20=3x\left(2x-5\right)+4\left(2x-5\right)=\left(2x-5\right)\left(3x+4\right)\)

\(8x^2+30x+7=8x^2+2x+28x+7=2x\left(4x+1\right)+7\left(4x+1\right)=\left(4x+1\right)\left(2x+7\right)\)

15 tháng 10 2020

3x (5x2 - 2x - 1)

15 tháng 8 2019

a) \(x^2+7x+12\)

\(=x^2+3x+4x+12\)

\(=x\left(x+3\right)+4\left(x+3\right)\)

\(=\left(x+3\right)\left(x+4\right)\)

15 tháng 8 2019

b) \(3x^2-5x+2\)

\(=3x^2-3x-2x+2\)

\(=3x\left(x-1\right)-2\left(x-1\right)\)

\(=\left(x-1\right)\left(3x-2\right)\)

a: Ta có: \(x^2-4x\left(3x-4\right)+7x-5\)

\(=x^2-12x^2+16x+7x-5\)

\(=-11x^2+23x-5\)

b: Ta có: \(7x\left(x^2-5\right)-3x^2y\left(xy-6y^2\right)\)

\(=7x^3-35x-3x^3y^2+18x^2y^3\)

c: Ta có: \(\left(5x+4\right)\left(2x-7\right)\)

\(=10x^2-35x+8x-28\)

\(=10x^2-27x-28\)

25 tháng 8 2021

undefined

15 tháng 8 2024

A = - 3\(x\).(\(x-5\)) + 3(\(x^2\) - 4\(x\)) - 3\(x\) - 10

A = - 3\(x^2\) + 15\(x\) + 3\(x^2\) - 12\(x\) - 3\(x\) - 10

A = (- 3\(x^2\) + 3\(x^2\)) + (15\(x\) - 12\(x\) - 3\(x\)) - 10

A = 0 + (3\(x-3x\)) - 10

A = 0  - 10

A = - 10 

a: \(=2x^3:\dfrac{-3}{2}x+4x:\dfrac{3}{2}x-5:\dfrac{3}{2}\)

=-4/3x^2+8/3-10/3

=-4/3x^2-2/3

d: \(\dfrac{3x^3-5x+2}{x-3}=\dfrac{3x^3-9x^2+9x^2-27x+22x-66+68}{x-3}\)

\(=3x^2+9x+22+\dfrac{68}{x-3}\)

2: =(2x+1)^2-y^2

=(2x+1+y)(2x+1-y)

3: =x^2(x^2+2x+1)

=x^2(x+1)^2

4: =x^2+6x-x-6

=(x+6)(x-1)

5: =-6x^2+3x+4x-2

=-3x(2x-1)+2(2x-1)

=(2x-1)(-3x+2)

6: =5x(x+y)-(x+y)

=(x+y)(5x-1)

7: =2x^2+5x-2x-5

=(2x+5)(x-1)

8: =(x^2-1)*(x^2-4)

=(x-1)(x+1)(x-2)(x+2)

9: =x^2(x-5)-9(x-5)

=(x-5)(x-3)(x+3)