Tìm x:
\(\frac{x+1}{3}=\frac{27}{x+1}\)
giúp e vs
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\frac{x-1}{2016}+\frac{x-2}{2015}-\frac{x-3}{2014}=\frac{x-4}{2013}\)
\(\left(\frac{x-1}{2016}-1\right)+\left(\frac{x-2}{2015}-1\right)-\left(\frac{x-3}{2014}-1\right)-\left(\frac{x-4}{2013}-1\right)=0\)
\(\frac{x-2017}{2016}+\frac{x-2017}{2015}-\frac{x-2017}{2014}-\frac{x-2017}{2013}=0\)
\(\left(x-2017\right)\left(\frac{1}{2016}+\frac{1}{2015}-\frac{1}{2014}-\frac{1}{2013}\right)=0\)
\(x-2017=0\left(\frac{1}{2016}+\frac{1}{2015}-\frac{1}{2014}-\frac{1}{2013}\ne0\right)\)
\(x=2017\)
x-1/2016+x-2/2015-x-3/2014=x-4/2013
<=> x-1/2016+x-2/2015-x-3/2014-x-4/2013=0
trừ mỗi phân số thêm 1 ta được
x-2017/2016+x-2017/2015-x-2017/2014-x-2017/2013=0
<=>(x-2017).(1/2016+1/2015+1/2014+1/2013)=0
(1/2016+1/2015+1/2014+1/2013) khác 0
=>x-2017=0
<=>x=2017
vậy x = 2017
\(a,\left[x+\frac{1}{3}\right]^3=-\frac{8}{27}\)
\(\Leftrightarrow\left[x+\frac{1}{3}\right]^3=\left[-\frac{2}{3}\right]^3\)
\(\Leftrightarrow x+\frac{1}{3}=-\frac{2}{3}\)
\(\Leftrightarrow x=-\frac{2}{3}-\frac{1}{3}=-1\)
Vậy x = -1
a) (x+1/3)3 = -8/27
<=> (x+1/3)3 = (-2/3)3
<=> x + 1/3 = -2/3
<=> x = -1
b) \(\frac{1}{4}x-\frac{8}{12}=1-\frac{3}{2}x\)
\(\Leftrightarrow\frac{7}{4}x=\frac{5}{3}\)
<=> x = 20/21
\(\frac{1}{x^2+3}+\frac{1}{x^2+9x+18}+\frac{1}{x^2+15x+54}=\frac{1}{2}\left(27-\frac{1}{x+9}\right)\)
\(\Leftrightarrow\frac{3}{x\left(x+3\right)}+\frac{3}{\left(x+3\right)\left(x+6\right)}+\frac{3}{\left(x+6\right)\left(x+9\right)}=27-\frac{1}{x+9}\)
Mà
\(\frac{3}{x\left(x+3\right)}+\frac{3}{\left(x+3\right)\left(x+6\right)}+\frac{3}{\left(x+6\right)\left(x+9\right)}\)
\(=\frac{1}{x}-\frac{1}{x+3}+\frac{1}{x+3}-\frac{1}{x+6}+\frac{1}{x+6}-\frac{1}{x+9}\)
\(=\frac{1}{x}-\frac{1}{x+9}\)
\(\Rightarrow\frac{1}{x}=27\Rightarrow x=\frac{1}{27}\)
a:=>x^2-1-x=2x-1
=>x^2-x-1=2x-1
=>x^2-3x=0
=>x=0(loại) hoặc x=3(nhận)
b:=>x+2=0 hoặc 5-3x=0
=>x=-2 hoặc x=5/3
c:=>20(1-2x)+6x=9(x-5)-24
=>20-40x+6x=9x-45-24
=>-34x+20=9x-69
=>-43x=-89
=>x=89/43
d: =>x^2+4x+4-x^2-2x+3=2x^2+8x-4x-16-3
=>2x^2+4x-19=-2x+7
=>2x^2+6x-26=0
=>x^2+3x-13=0
=>\(x=\dfrac{-3\pm\sqrt{61}}{2}\)
e: =>(2x-3)(2x-3-x-1)=0
=>(2x-3)(x-4)=0
=>x=4 hoặc x=3/2
Qui đồng rồi khử mẫu, ta được:
\(4x+12.\left(27-x\right)=15x+5.\left(27-x\right)\)
\(\Leftrightarrow4x+324-12x=15x+135-5x\)
\(\Leftrightarrow4x-12x-15x+5x=135-324\)
\(\Leftrightarrow-18x=-189\Leftrightarrow x=\frac{21}{2}=10,5\)
Vậy x = 10,5
\(\frac{x}{15}+\frac{27-x}{5}=\frac{x}{4}+\frac{27-x}{12}\)
\(\frac{x}{15}+\frac{3\left(27-x\right)}{15}=\frac{3x}{12}+\frac{27-x}{12}\)
\(\frac{x}{15}+\frac{81-3x}{15}=\frac{3x}{12}+\frac{27-x}{12}\)
\(\frac{x+81-3x}{15}=\frac{3x+27-x}{12}\)
\(\frac{-2x+81}{15}=\frac{2x+27}{12}\)
\(12\left(-2x+81\right)=15\left(2x+27\right)\)
\(-24x+972=30x+405\)
\(972-405=30x+24x\)
\(567=54x\)
\(x=567:54\)
\(x=10,5\)
a, \(x^2\) = \(x^3\)
\(x^3\) - \(x^2\) = 0
\(x^2\)( \(x\) -1) = 0
\(\left[{}\begin{matrix}x^2=0\\x-1=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
Vậy \(x\) \(\in\) { 0; 1}
e, 32\(x+1\) = 27
\(3^{2x}\)+1 = 33
2\(x\) + 1 = 3
2\(x\) = 2
\(x\) = 1
g, 62 = 6\(x-3\)
2 = \(x-3\)
\(x\) = 3 + 2
\(x\) = 5
\(a,x^2=x^3\\ \Rightarrow x^2-x^3=0\\ \Rightarrow x^2\left(1-x\right)=0\\ \Rightarrow\left[{}\begin{matrix}x^2=0\\1-x=0\end{matrix}\right.\\ \Rightarrow\left[{}\begin{matrix}x=0\\x=1\end{matrix}\right.\)
\(b,3^{2x+1}=27\\ \Rightarrow3^{2x+1}=3^3\\ \Rightarrow2x+1=3\\ \Rightarrow2x=3-1\\ \Rightarrow2x=2\\ \Rightarrow x=2:2\\ \Rightarrow x=1\)
\(c,6^2=6^{x-3}\\ \Rightarrow6^{x-3}=6^2\\ \Rightarrow x-3=2\\ \Rightarrow x=2+3\\ \Rightarrow x=5\)
--> (x+1)2 = 27.3 = 81
--> \(x+1=\pm9\)
--> \(x\in\left\{8;-10\right\}\)
\(\frac{\left(x+1\right)}{3}=\frac{27}{\left(x+1\right)}\)
\(\Leftrightarrow\left(x+1\right)\left(x+1\right)=3\times27\)
\(\left(x+1\right)^2=81\)
\(\left(x+1\right)^2=9^2=\left(-9\right)^2\)
\(\Rightarrow x+1=9\text{ hoặc }x+1=-9\)
\(x=8\) \(x=-10\)
Vậy ...