CHo cac so duong,
a+b=\(\sqrt{1-a^2}+\)\(\sqrt{1-b^2}\)
CMR:\(a^2+b^2=\)1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có : \(a^2+b^2\ge\frac{1}{2}\left(a+b\right)^2\Rightarrow\sqrt{a^2+b^2}\ge\frac{\sqrt{2}}{2}\left(a+b\right)\)
\(\sqrt{b^2+c^2}\ge\frac{\sqrt{2}}{2}\left(b+c\right)\)
\(\sqrt{c^2+a^2}\ge\frac{\sqrt{2}}{2}\left(c+a\right)\)
\(\Rightarrow\sqrt{a^2+b^2}+\sqrt{b^2+c^2}+\sqrt{c^2+a^2}\ge\frac{\sqrt{2}}{2}.2.\left(a+b+c\right)=\sqrt{2}\)
@@ minh cung moi tim ra huong giai nhung chua hieu cach giai cua ban
Lời giải:
Biểu thức có GTLN chứ không có GTNN bạn nhé. Nếu tìm GTLN thì làm như sau:
\(a+b+c=abc\)
\(\Rightarrow a(a+b+c)=a^2bc\)
\(\Rightarrow a(a+b+c)+bc=a^2bc+bc\)
\(\Rightarrow (a+b)(a+c)=bc(a^2+1)\)
\(\Rightarrow \frac{a}{\sqrt{bc(1+a^2)}}=\frac{a}{\sqrt{(a+b)(a+c)}}\leq \frac{1}{2}\left(\frac{a}{a+b}+\frac{a}{a+c}\right)\) (theo BĐT AM-GM)
Hoàn toàn tương tự với các phân thức còn lại:
\(\frac{b}{\sqrt{ca(1+b^2)}}\leq \frac{1}{2}\left(\frac{b}{b+a}+\frac{b}{b+c}\right);\frac{c}{\sqrt{ab(1+c^2)}}\leq \frac{1}{2}\left(\frac{c}{c+a}+\frac{c}{c+b}\right)\)
Cộng theo vế các BĐT trên và rút gọn:
\(\Rightarrow \frac{a}{\sqrt{bc(1+a^2)}}+\frac{b}{\sqrt{ca(1+b^2)}}+\frac{c}{\sqrt{ab(1+c^2)}}\leq \frac{1}{2}\left(\frac{a+b}{a+b}+\frac{b+c}{b+c}+\frac{c+a}{c+a}\right)=\frac{3}{2}\)
Vậy GTLN là $\frac{3}{2}$. Dấu "=" xảy ra khi $a=b=c=\sqrt{3}$
chuẩn hóa \(a^2+b^2+c^2=1\)
\(VT\ge\frac{3\sqrt{3}}{2}.\)
chúng ta cần chứng minh:\(\frac{a}{b^2+c^2}\ge\frac{3\sqrt{3}a^2}{2}\Leftrightarrow\frac{a}{1-a^2}\ge\frac{3\sqrt{3}a^2}{2}\)
\(\Leftrightarrow\frac{1}{1-a^2}\ge\frac{3\sqrt{3}a}{2}.\)
\(\Leftrightarrow a\left(1-a^2\right)\le\frac{2}{3\sqrt{3}}.\)
\(\Leftrightarrow a^2\left(1-a^2\right)^2\le\frac{4}{27}.\)
Mà\(\)
\(\Leftrightarrow2a^2\left(1-a^2\right)\left(1-a^2\right)\le\frac{\left(2a^2+1-a^2+1-a^2\right)^3}{27}=\frac{8}{27}.\left(dung\right)\)
Nên\(a^2\left(1-a^2\right)^2\le\frac{4}{27}\left(luondung\right)\)
Tương tự ta có: \(\frac{b}{a^2+c^2}\ge\frac{3\sqrt{3}b^2}{2};\frac{c}{a^2+b^2}\ge\frac{3\sqrt{3}c^2}{2}\)
Cộng lại ta có \(đpcm\)
Dấu bằng xảy ra khi \(a=b=c=\frac{1}{\sqrt{3}}\)
Mình chỉ làm sơ sơ, có gì bạn sửa lại
Ta có: \(\frac{a}{\sqrt{b^3+1}}+\frac{b}{\sqrt{c^3+1}}+\frac{c}{\sqrt{a^3+1}}\)
Đặt a ; b và c = 2 .
Thế số vào biểu thức ta có:
\(\frac{2}{\sqrt{2^3+1}}+\frac{2}{\sqrt{2^3+1}}+\frac{2}{\sqrt{2^3+1}}\)
\(\Leftrightarrow\frac{2}{\left(2^3+1\right)^2}+\frac{2}{\left(2^3+1\right)^2}+\frac{2}{\left(2^3+1\right)^2}\)
\(\Leftrightarrow\frac{2}{\left(2^3+1\right)^2}.3\Leftrightarrow\frac{2}{\left(8+1\right)^2}.3\Leftrightarrow\frac{2}{9^2}\ge2\)
Ta có ĐPCM