phân tích đa thức thành nhân tử 4x^4 -16 -4x^2 -16x
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x^4-4x^3+8x^2-16x+16 \)
\(=x^3\left(x-2\right)-2x^2\left(x-2\right)+4x\left(x-2\right)-8\left(x-2\right)\)
\(=\left(x-2\right)\left(x^3-2x^2+4x-8\right)\)
\(=\left(x-2\right)\left[x^2\left(x-2\right)+4\left(x-2\right)\right]\)
\(=\left(x-2\right)^2\left(x^2+4\right)\)
a,x4-4x3+8x2-16x+16
=x4-4x3+4x2+4x2-16x+16
=x2.(x-2)2+4.(x-2)2
=(x-2)2(x2+4)
a) \(4x^4+4x^3-x^2-x=4x^3\left(x+1\right)-x\left(x+1\right)\)
\(=\left(4x^3-x\right)\left(x+1\right)=x\left(4x^2-1\right)\left(x+1\right)\)
\(=x\left\{\left(2x\right)^2-1\right\}\left(x+1\right)=x\left(2x-1\right)\left(2x+1\right) \left(x+1\right)\)
c) \(x^4-4x^3+8x^2-16x+16=x^4+8x^2+16-\left(4x^3+16x\right)\)
\(=\left(x^2+4\right)^2-4x\left(x^2+4\right)=\left(x^2-4x+4\right)\left(x^2+4\right)=\left(x-2\right)^2\left(x^2+4\right)\)
b) \(x^6-x^4-9x^3+9x^2=x^4\left(x^2-1\right)-\left(9x^3-9x^2\right)\)
\(=x^4\left(x-1\right)\left(x+1\right)-9x^2\left(x-1\right)\)
\(=\left(x^5+x^4-9x^2\right)\left(x-1\right)=\left(x-1\right)x^2\left(x^3+x^2-9\right)\)
x^4 - 4x^3 - 8x^2 - 16x + 16
= x^4-8x^2+16-4x^3-16x
= ( x^2+4)^2 - 4x(x^2+4 )
= ( x^2 + 4 )(x^2 + 4 - 4x)
= (x^2 + 4 )( x - 2 )^2
\(x^3-2x^2+x-xy^2\)
\(=x\left(x^2-2x+1-y^2\right)\)
\(=x\left[\left(x-1\right)^2-y^2\right]\)
\(=x\left(x-1-y\right)\left(x-1+y\right)\)
Lời giải:
$(4x-2)^2-16x+16x=(4x-2)^2$
----------------
$(3x-4)(3x+4)-(20x^2y-15xy^2):(5xy)$
$=(3x-4)(3x+4)-(4x-3y)$ không phân tích được thành nhân tử.
-----------------------------------
$(x-2)(3x^2+6x+12)-(120^2x^2y^2):(60xy^2)$
$=3(x-2)(x^2+2x+4)-240x$
$=3(x^3-2^3)-240x=3x^3-240x-24$
$=3(x^3-80x-8)$
\(4x^4-16-4x^2-16x\)
\(=4x^2\left(x^2-1\right)-16\left(1+x\right)\)
\(=4x^2\left(x+1\right)\left(x-1\right)-16\left(x+1\right)\)
\(=\left(x+1\right)\left[4x^2\left(x-1\right)-16\right]\)
\(=\left(x+1\right)4\left[x^2\left(x-1\right)-4\right]\)
Nguyễn Văn Tuấn AnhNs r, không biết thì not làm
\(4x^4-16-4x^2-16x\)
\(=4x^2\left(x^2-1\right)-16\left(x+1\right)\)
\(=4x^2\left(x-1\right)\left(x+1\right)-16\left(x+1\right)\)
\(=\left(x+1\right)\left[4x^2\left(x-1\right)-16\right]\)
\(=4\left(x+1\right)\left[x^2\left(x-1\right)-4\right]\)
\(=4\left(x+1\right)\left[x^3-x^2-4\right]\)
\(=4\left(x+1\right)\left[x^3+x^2+2x-2x^2-2x-4\right]\)
\(=4\left(x+1\right)\left[x\left(x^2+x+2\right)-2\left(x^2+x+2\right)\right]\)
\(=4\left(x+1\right)\left(x-2\right)\left(x^2+x+2\right)\)