cho tam giác ABC vuông tại A, có đường cao AH; BH = 4cm, CH= 9cm. Từ H kẻ HD vuông góc AB, HE vuông góc AC.
a. Tính AH
b. Chứng minh: tam giác ADE đồng dạng với tam giác ACB
c. Kẻ đường thẳng vuông góc với DE tại E, cắt HC tại M. Tính \(\sin\widehat{DME}\)
Để giải bài toán này, ta sẽ thực hiện theo từng phần như sau:
a. Tính AH
Trong tam giác vuông ABC, ta có:
b. Chứng minh tam giác ADE đồng dạng với tam giác ACB
Để chứng minh hai tam giác đồng dạng, ta cần chứng minh có ít nhất hai cặp cạnh tỷ lệ với nhau.
Xét tam giác ADE và tam giác ACB:
c. Kẻ đường thẳng vuông góc với DE tại E, cắt HC tại M. Tính sin DME
Theo định lý Pytago-rơ, ta có:
\(D M^{2} + M E^{2} = D E^{2}\)
Vì DE vuông góc với EM, nên:
\(s i n D M E = \frac{D M}{D E}\)