cho hsố:f(x)=(x2+12x-31)
Tính P(a)tại a=\(\sqrt[3]{16-8\sqrt{5}}+\sqrt[3]{16+8\sqrt{5}}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(a^3=16-8\sqrt{5}+16+8\sqrt{5}+96\sqrt[3]{\left(16-8\sqrt{5}\right)\left(16+8\sqrt{5}\right)}\)
\(a^3=32+96\sqrt[3]{-64}=32+96.\left(-4\right)=-352\)
đến đây dễ r
\(a^3=32+3\sqrt[3]{\left(16-8\sqrt{5}\right)\left(16+8\sqrt{5}\right)}\left(\sqrt[3]{16+8\sqrt{5}}+\sqrt[3]{16-8\sqrt{5}}\right)\)
Bạn tham khảo lời giải tại đây:
Câu hỏi của Duong Thi Nhuong TH Hoa Trach - Phong GD va DT Bo Trach - Toán lớp 8 | Học trực tuyến
Phần b đề không rõ.
Đặt \(a=\sqrt[3]{16-8\sqrt{5}};b=\sqrt[3]{16+8\sqrt{5}}\)
Ta có \(a^3+b^3=32\)
\(\Rightarrow\left(a+b\right)^3-3ab\left(a+b\right)=32\left(^∗\right)\)
\(a^3.b^3=\left(16-8\sqrt{5}\right)\left(16+8\sqrt{5}\right)=16^2-\left(8\sqrt{5}\right)^2=-64\)
\(\Rightarrow ab=-4\)
Kết hợp với \(\left(^∗\right)\) \(\Rightarrow\left(a+b\right)^3+12\left(a+b\right)=32\)
\(\Rightarrow a+b=2=x\)
Thay \(x=2\)vào \(f\left(x\right)\)ta được :
\(F\left(2\right)=\left(2^3+12.2-31\right)^{2016}^{^{2017}}=1^{2016^{2017}}=1\)
Chúc bạn học tốt !!!
\(a^3=16-8\sqrt{5}+16+8\sqrt{5}+3.\sqrt[3]{16^2-8^2.5}a\)
\(a^3=32+3.\sqrt[3]{4^3\left(4-5\right)}a=32-12a\)
\(f\left(x\right)=\left[\left(32-12a\right)+12a-31\right]^{2016}=1^{2016}=1\)
a=\(\sqrt[3]{16-8\sqrt{5}}\)+\(\sqrt[3]{16+8\sqrt{5}}\)
=\(\sqrt[3]{1-3\sqrt{5}+15-5\sqrt{5}}+\sqrt[3]{1+3\sqrt{5}+15+5\sqrt{5}}\)=\(\sqrt[3]{\left(1-\sqrt{5}\right)^3}+\sqrt[3]{\left(1+\sqrt{5}\right)^3}\)
=1-\(\sqrt{5}+1+\sqrt{5}\)=2
thay vào ta được f(a)=(8+24-31)2016=(-1)2016=1
Đặt \(a=\sqrt[3]{16-8\sqrt{5}};b=\sqrt[3]{16+8\sqrt{5}}\)
Ta có: a3 + b3 = 32
=> (a + b)3 - 3ab(a + b) = 32 (*)
a3.b3 = \(\left(16-8\sqrt{5}\right)\left(16+8\sqrt{5}\right)=16^2-\left(8\sqrt{5}\right)^2=-64\)
=> ab = -4
Kết hợp với (*) => (a + b)3 + 12(a + b) = 32
=> a + b = 2 = x
Thay x = 2 vào f(x) ta được:
\(F\left(2\right)=\left(2^3+12.2-31\right)^{2016^{2017}}=1^{2016^{2017}}=1\)
\(\sqrt[3]{16-8\sqrt{5}}\)=\(\sqrt[3]{1-3\sqrt{5}+15-5\sqrt{5}}\)=\(\sqrt[3]{1-3\sqrt{5}+3\left(\sqrt{5}\right)^2-\left(\sqrt{5}\right)^3}\)=\(\sqrt[3]{\left(1-\sqrt{5}\right)^3}\)=\(1-\sqrt{5}\)
làm tương tự: \(\sqrt[3]{16+8\sqrt{5}}\)=\(1+\sqrt{5}\)
suy ra: a = 2
\(a=\sqrt[3]{16-8\sqrt{5}}+\sqrt[3]{16+8\sqrt{5}}\)
\(\Leftrightarrow a^3=16-8\sqrt{5}+16+8\sqrt{5}+3\sqrt[3]{\left(16-8\sqrt{5}\right)\left(16+8\sqrt{5}\right)}\cdot a\)
\(\Leftrightarrow a^3=32+3\sqrt[3]{256-320}\cdot a\)
\(\Leftrightarrow a^3=32-12a\)
Giải pt được \(a=2\).
Khi đó : \(P\left(a\right)=\left(2^2+12\cdot2-31\right)=-3\)
Vậy...