K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 8 2019

\(a=\sqrt[3]{16-8\sqrt{5}}+\sqrt[3]{16+8\sqrt{5}}\)

\(\Leftrightarrow a^3=16-8\sqrt{5}+16+8\sqrt{5}+3\sqrt[3]{\left(16-8\sqrt{5}\right)\left(16+8\sqrt{5}\right)}\cdot a\)

\(\Leftrightarrow a^3=32+3\sqrt[3]{256-320}\cdot a\)

\(\Leftrightarrow a^3=32-12a\)

Giải pt được \(a=2\).

Khi đó : \(P\left(a\right)=\left(2^2+12\cdot2-31\right)=-3\)

Vậy...

20 tháng 1 2019

\(a^3=16-8\sqrt{5}+16+8\sqrt{5}+96\sqrt[3]{\left(16-8\sqrt{5}\right)\left(16+8\sqrt{5}\right)}\)

\(a^3=32+96\sqrt[3]{-64}=32+96.\left(-4\right)=-352\)

đến đây dễ r 

20 tháng 1 2019

\(a^3=32+3\sqrt[3]{\left(16-8\sqrt{5}\right)\left(16+8\sqrt{5}\right)}\left(\sqrt[3]{16+8\sqrt{5}}+\sqrt[3]{16-8\sqrt{5}}\right)\)

AH
Akai Haruma
Giáo viên
5 tháng 3 2020

Bạn tham khảo lời giải tại đây:

Câu hỏi của Duong Thi Nhuong TH Hoa Trach - Phong GD va DT Bo Trach - Toán lớp 8 | Học trực tuyến

Phần b đề không rõ.

6 tháng 3 2020

Mình ghi rõ cho bạn xem nha!

Violympic toán 9

3 tháng 2 2020

Đặt \(a=\sqrt[3]{16-8\sqrt{5}};b=\sqrt[3]{16+8\sqrt{5}}\)

Ta có \(a^3+b^3=32\)

\(\Rightarrow\left(a+b\right)^3-3ab\left(a+b\right)=32\left(^∗\right)\)

\(a^3.b^3=\left(16-8\sqrt{5}\right)\left(16+8\sqrt{5}\right)=16^2-\left(8\sqrt{5}\right)^2=-64\)

\(\Rightarrow ab=-4\)

Kết hợp với \(\left(^∗\right)\) \(\Rightarrow\left(a+b\right)^3+12\left(a+b\right)=32\)

\(\Rightarrow a+b=2=x\)

Thay \(x=2\)vào \(f\left(x\right)\)ta được :

\(F\left(2\right)=\left(2^3+12.2-31\right)^{2016}^{^{2017}}=1^{2016^{2017}}=1\)

Chúc bạn học tốt !!!

22 tháng 3 2017

\(a^3=16-8\sqrt{5}+16+8\sqrt{5}+3.\sqrt[3]{16^2-8^2.5}a\)

\(a^3=32+3.\sqrt[3]{4^3\left(4-5\right)}a=32-12a\)

\(f\left(x\right)=\left[\left(32-12a\right)+12a-31\right]^{2016}=1^{2016}=1\)

22 tháng 3 2017

a=\(\sqrt[3]{16-8\sqrt{5}}\)+\(\sqrt[3]{16+8\sqrt{5}}\)

=\(\sqrt[3]{1-3\sqrt{5}+15-5\sqrt{5}}+\sqrt[3]{1+3\sqrt{5}+15+5\sqrt{5}}\)=\(\sqrt[3]{\left(1-\sqrt{5}\right)^3}+\sqrt[3]{\left(1+\sqrt{5}\right)^3}\)

=1-\(\sqrt{5}+1+\sqrt{5}\)=2

thay vào ta được f(a)=(8+24-31)2016=(-1)2016=1

22 tháng 3 2017

Đặt \(a=\sqrt[3]{16-8\sqrt{5}};b=\sqrt[3]{16+8\sqrt{5}}\)

Ta có: a3 + b3 = 32

=> (a + b)3 - 3ab(a + b) = 32 (*)

a3.b3 = \(\left(16-8\sqrt{5}\right)\left(16+8\sqrt{5}\right)=16^2-\left(8\sqrt{5}\right)^2=-64\)

=> ab = -4

Kết hợp với (*) => (a + b)3 + 12(a + b) = 32

=> a + b = 2 = x

Thay x = 2 vào f(x) ta được:

\(F\left(2\right)=\left(2^3+12.2-31\right)^{2016^{2017}}=1^{2016^{2017}}=1\)

18 tháng 6 2018

\(\sqrt[3]{}\) hay\(\sqrt{ }\) vậy

22 tháng 12 2015

giải chi tiết hộ mk nhá

 

22 tháng 12 2015

\(\sqrt[3]{16-8\sqrt{5}}\)=\(\sqrt[3]{1-3\sqrt{5}+15-5\sqrt{5}}\)=\(\sqrt[3]{1-3\sqrt{5}+3\left(\sqrt{5}\right)^2-\left(\sqrt{5}\right)^3}\)=\(\sqrt[3]{\left(1-\sqrt{5}\right)^3}\)=\(1-\sqrt{5}\)

làm tương tự: \(\sqrt[3]{16+8\sqrt{5}}\)=\(1+\sqrt{5}\)

suy ra: a = 2