A=5+52+53+....+5100
CHUNG TO A:13
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đề bài thiếu yêu cầu cụ thể em nhé. em cập nhật lại câu hỏi để được sự hỗ trợ tốt nhất cho tài khoản olm vip
Sửa câu a
a)Ta có:
\(A=3+3^2+3^3+...+3^{99}\)
\(A=\left(3+3^2+3^3\right)+...+\left(3^{97}+3^{98}+3^{99}\right)\)
\(A=\left(3+3^2+3^3\right)+...+3^{96}.\left(3+3^2+3^3\right)\)
\(A=39+...+3^{96}.39\)
\(A=39.\left(1+...+3^{96}\right)\)
Vì 39 \(⋮\) 13 nên 39 . ( 1 + ... + 396 ) \(⋮\) 13
Vậy A \(⋮\) 13
_________
b)Ta có:
\(B=5+5^2+5^3+...+5^{50}\)
\(B=\left(5+5^2\right)+\left(5^3+5^4\right)+...+\left(5^{49}+5^{50}\right)\)
\(B=\left(5+5^2\right)+5^2.\left(5+5^2\right)+...+5^{48}.\left(5+5^2\right)\)
\(B=30+5^2.30+...+5^{48}.30\)
\(B=30.\left(1+5^2+...+5^{48}\right)\)
Vì 30 \(⋮\) 6 nên 30. ( 1 + 52 + ... + 548 ) \(⋮\) 6
Vậy B \(⋮\) 6
a,A=3+32+33+..+399=(3+32+33)+...+(397+398+399)
=3(1+3+32)+...+397(1+3+32)=3x13+...+397x13=13(3+...+97)⋮13
b,B=5+52+...+550=(5+52)+...+(549+550)=5(1+5)+..+549(1+5)
=5x6+...+549x6=6(5+..+549)⋮6.
A= 1 + 5 + 52 + 5 3 + ... + 5800
5A= 5 + 52 + 53 + .... +5 800 + 5801
5A - A = 5801 - 1
4a = 5801 - 1
5801 - 1 +1 = 5n
⇒ 5801 = 5n ⇒ n = 801
\(C=\left(5+5^2+5^3+5^4\right)+\left(5^5+5^6+5^7+5^8\right)...+\left(5^{17}+5^{18}+5^{19}+5^{20}\right)\\ C=5\left(1+5+5^2+5^3\right)+5^5\left(1+5+5^2+5^3\right)...+5^{17}\left(1+5+5^2+5^3\right)\\ C=5\cdot156+5^5\cdot156+...+5^{17}\cdot156\\ C=156\left(5+5^5+...+5^{17}\right)\\ C=12\cdot13\left(5+5^5+...+5^{17}\right)⋮17\)
A = 5 + 5² + 5³ + ... + 5⁴⁹ + 5⁵⁰
⇒ 5A = 5² + 5³ + 5⁴ + ... + 5⁵⁰ + 5⁵¹
⇒ 4A = 5A - A
= (5² + 5³ + 5⁴ + ... + 5⁵⁰ + 5⁵¹) - (5 + 5² + 5³ + ... + 5⁴⁹ + 5⁵⁰)
= 5⁵¹ - 5
⇒ A = (5⁵¹ - 5) : 4
a) 13 . 58 . 4 + 32 . 26 . 2 + 52 . 10 b) 53 . 51 + 4 + 53 . 49 + 91 + 53
= 52 . 58 + 32 . 52 + 52 . 10 = 53 . 55 + 53 . 145 + 53 . 1
= 52. ( 58 + 32 + 10 ) = 53 . ( 55 + 145 + 1 )
= 52 . 100 = 53 . 201
= 52000 = 10653
~ Chúc bn hok tốt ~
A = 5 + 5² + 5³ + ... + 5²⁰²³
⇒ 5A = 5² + 5³ + 5⁴ + ... + 5²⁰²⁴
⇒ 4A = 5A - A
= (5² + 5³ + 5⁴ + ... + 5²⁰²⁴) - (5 + 5² + 5³ + ... + 5²⁰²³)
= 5²⁰²⁴ - 5
⇒ A = (5²⁰²⁴ - 5)/4
A = 5 + 5² + 5³ + ... + 5²⁰²³
⇒ 5A = 5² + 5³ + 5⁴ + ... + 5²⁰²⁴
⇒ 4A = 5A - A
= (5² + 5³ + 5⁴ + ... + 5²⁰²⁴) - (5 + 5² + 5³ + ... + 5²⁰²³)
= 5²⁰²⁴ - 5
⇒ A = (5²⁰²⁴ - 5)/4
\(5+5^2+...+5^{100}\\ =\left(5+5^2+5^3+5^4\right)+5^4\left(5+5^2+5^3+5^4\right)+...+5^{96}\left(5+5^2+5^3+5^4\right)\\ =\left(5+5^2+5^3+5^4\right)\left(1+5^4+...+5^{96}\right)\\ =156\left(1+5^4+...+5^{96}\right)⋮156\left(đpcm\right)\)
Lời giải:
$A=(5-5^2)-(5^3+5^4)-(5^5+5^6)$
$=5(1-5)-5^4(1+5)-5^5(1+5)$
$=-20-5^4.6-5^5.6=-20-30.5^3-30.5^4$
$=-20-30(5^3+5^4)$ không chia hết cho $30$ cho $20$ không chia hết cho $30$
Do đó $A$ không thể là bội của $30$
A=5+52+53+....+5100
->5A=53+54+55+....+5100+5101
4A=5101-5
->4A+5101-5+5=5101
->5n=5101
->n=101
#Hok_tốt
\(A=5+5^2+5^3+...+5^{100}\)
\(=\left(5+5^2+5^3+5^4\right)+\left(5^5+5^6+5^7+5^8\right)+...+\left(5^{97}+5^{98}+5^{99}+5^{100}\right)\)
\(=\left(5+5^2+5^3+5^4\right)+5^4.\left(5+5^2+5^3+5^4\right)+...+5^{96}.\left(5+5^2+5^3+5^4\right)\)
\(=780+5^4.780+...+5^{96}.780\)
\(=780.\left(1+5^4+...+5^{96}\right)\)
\(=13.60.\left(1+5^4+...+5^{96}\right)⋮13\)
\(\Rightarrow A⋮13\left(\text{ĐPCM}\right)\)