K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

21 tháng 8 2019

Ta có:

\(m^2-4m+3=m^2-4m+4-1=\left(m-2\right)^2-1=\left(m-3\right)\left(m-1\right)\)

\(m-m^2=m\left(1-m\right)\)

Bất phương trình <=> \(\left(m-3\right)\left(m-1\right)x+m\left(1-m\right)< 0\)

+) TH1: \(\left(m-3\right)\left(m-1\right)< 0\)

khi đó: \(x>\frac{m}{m-3}\)(loại)

+) TH2:  \(\left(m-3\right)\left(m-1\right)>0\)

khi đó: \(x< \frac{m}{m-3}\)(loại)

+) Th3: \(\left(m-3\right)\left(m-1\right)=0\Leftrightarrow\orbr{\begin{cases}m=1\\m=3\end{cases}}\)

Với m=1 ta có: 0x+0<0 vô lí

Với m=3 ta có: \(0x-6< 0\)đúng với mọi x ( thỏa mãn)

Vậy m=3

2 tháng 12 2017

Chọn C

5 tháng 2 2017

Chọn C

NV
28 tháng 8 2021

Đặt \(\sqrt{-x^2+2x+15}=t\Rightarrow0\le t\le4\)

BPT trở thành:

\(-4t\ge-t^2+2+m\)

\(\Leftrightarrow t^2-4t-2\ge m\)

\(\Rightarrow m\le\min\limits_{\left[0;4\right]}\left(t^2-4t-2\right)\)

Xét \(f\left(t\right)=t^2-4t-2\) trên \(\left[0;4\right]\)

\(-\dfrac{b}{2a}=2\in\left[0;4\right]\)

\(f\left(0\right)=f\left(4\right)=-2\) ; \(f\left(2\right)=-6\)

\(\Rightarrow f\left(t\right)_{min}=-6\Rightarrow m\le-6\)

22 tháng 5 2018

* Nếu m= 0 thì bất phương trình đã cho trở  thành: 

0x < 0(  luôn đúng với mọi x).

* Nếu  m= 1 thì bất phương trình đã cho  trở thành:

0x < 1 ( luôn đúng với mọi x)

Tập tất cả các giá trị của tham số m để bất phương trình đã cho nghiệm đúng với mọi x là {0; 1}

8 tháng 11 2018

+ Khi m = 0, bất phương trình trở thành - 2 x + 2 < 0 ⇔ x > 1 . Vậy m = 0 không thỏa mãn yêu cầu của bài toán.

+ Khi m ≠ 0 , bất phương trình vô nghiệm khi m x 2 + 2 m - 1 x + m + 2 ≥ 0 ,   ∀ x ∈ ℝ . ⇔ a > 0 ∆ ' ≤ 0 ⇔ m > 0 ( m - 1 ) 2 - m ( m + 2 ) ≤ 0 .

⇔ m > 0 - 4 m + 1 ≤ 0 ⇔ m > 0 m ≥ 1 4 ⇔ m ≥ 1 4

Chọn C.

24 tháng 4 2021

a) Ta có: \(\Delta'=(\frac{6}{2})^2-m\)

                    \(=9-m\)

Để phương trình có 2 nghiệm phân biệt thì:

\(\Delta>0\)

\(\Rightarrow 9-m>0\)

\(\Leftrightarrow m<9\)

Vậy khi m < 9 thì phương trình có 2 nghiệm phân biệt

b)Theo định lí Vi-ét ta có:

\(x_1.x_2=\frac{-m}{1}=-m(1)\)

\(x_1+x_2=\frac{-6}{1}=-6\)

Lại có \(x_1=2x_2\)

\(\Rightarrow3x_2=-6\)

\(\Leftrightarrow x_2=-2\)

\(\Rightarrow x_1=-4\)

Thay x1;x2 vào (1) ta được 

\(8=m\)

Vậy m-8 thì x1=2x2

 

 

24 tháng 4 2021

Ở trên có đoạn mình đánh lộn  \(\Delta'\) ra \(\Delta\) nhé

15 tháng 1 2019

Chọn D

17 tháng 4 2016

ta có 

\(\Delta\)=( -m )2  -4.1.( -3m-1) =m2 +12m+4

Để phương trình >0 

\(\Leftrightarrow\)  \(\Delta\)>0

\(\Leftrightarrow\) m2 +12m+4>0

\(\Leftrightarrow\) m \(\in\) \(\left(-\infty;-6-4\sqrt{2}\right)\cap\left(-6+4\sqrt{2};+\infty\right)\)