K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Chứng minh rằng tổng của ba số tự nhiên liên tiếp luôn chia hết cho 3

Đặt 3 số tự nhiên liên tiếp là: n, n+1, n+2

Giả sử n⋮ 3 thì thỏa mãn đề bài

Giả sử n chia 3 dư 1 thì n=3k+1 ⇒ n+2=3k+3⋮ 3 ⇒ thỏa mãn đề bài

Giả sử n chia 3 dư 2 thì n=3k+2 ⇒ n+1=3k+3⋮ 3 ⇒ thỏa mãn đề bài

Vậy trong 3 số tự nhiên liên tiếp thì luô có 1 số chi hết cho 3

11 tháng 10 2021

ta có : tông 3 số tự nhiên liên tiếp là :

a+a+1+a+2= 3a+3 

vì 3 chia hết cho (chc) 3 mà một số tự nhiên nhân với bất kì số nào cũng chia hết cho chính no

=> 3a chc 3 

=> 3a+3 chc 3

Vậy 3 số tự nhiên liên tiếp luôn chc 3

15 tháng 1 2018

gọi 3 số tự nhiên Liên tiếp là: a,a+1,a+2. => a+(a+1)(a+2)=a+a+1+a+2=3a+3. 3a chia hết cho 3,3 cũng chia hết cho 3 => tổng này luôn luôn chia hết cho 3

4 tháng 1 2022

.

25 tháng 7 2018

gọi 3 số tự nhiên Liên tiếp là: a,a+1,a+2.

=> a+(a+1)(a+2)=a+a+1+a+2=3a+3.

3a chia hết cho 3,3 cũng chia hết cho 3

=> tổng này luôn luôn chia hết cho 3.

2 tháng 8 2023

a, Gọi 3 số tự nhiên liên tiếp là n; n+1 và n+2

Tổng chúng: n+(n+1)+(n+2)= 3n+3\(⋮\) 3 \(\forall n\in N\) (đpcm)

b, Gọi 4 số tự nhiên liên tiếp là n; n+1; n+2; n+3

Tổng chúng: \(n+\left(n+1\right)+\left(n+2\right)+\left(n+3\right)=4n+6⋮̸4\forall n\in N\left(Vì:4n⋮4;6⋮̸4\right)\left(đpcm\right)\)

 

2 tháng 8 2023

c, Hai số tự nhiên liên tiếp là k và k+1

Tích chúng: k(k+1) . Nếu k chẵn thì k+1 lẻ => Tích chẵn, chia hết cho 2

Nếu k lẻ thì k+1 chẵn => Tích chẵn, chia hết cho 2

(ĐPCM)

d, Ba số tự nhiên liên tiếp là m;m+1 và m+2

Tích chúng: m(m+1)(m+2) 

+) TH1: Nếu m chia hết cho 3 => Tích 3 số chia hết cho 3

+) TH2: Nếu m chia 3 dư 1 => m+2 chia hết cho 3 => Tích 3 số chia hết cho 3

+) TH3: Nếu m chia 3 dư 2 => m+1 chia hết cho 3 => Tích 3 số chia hết cho 3

=> Kết luận: Tích 3 số tự nhiên liên tiếp chia hết cho 3 (đpcm)

 

11 tháng 7 2016

Gọi 3 số tự nhiên liên tiếp là: a ; a + 1 ; a + 2

Ta có tổng 3 số tự nhiên liên tiếp là:

a + (a + 1) + (a + 2) = 3a + 3 chia hết cho 3

6 tháng 11 2014

a, gọi ba số tự nhiên liên tiếp là a,a+1,a+2

ta có a+(a+1)+(a+2) = 3a +3 chia hết cho 3

vì 3a chia hết cho3 , 3 chia hết cho 3 

suy ra ba số tự nhiên liên tiếp chia hết cho 3

b, gọi bốn số tự nhiên liên tiếp là a,a+1,a+2,a+3

ta có a+(a+1) +(a+2)+(a+3) = 4a +6 không chia hết cho 4

vì 4a chia hết cho 4 , 6 không chia hết cho 4

suy ra bốn số tự nhiên liên tiếp  không chia hết cho 4

c,gọi năm số liên tiếp là a ,a+1,a+2,a+3,a+4

ta có a+(a+1)+(a+2)+(a+3)+(a+4) = 5a +10 chia

 hết cho 5

vì 5a chia hết cho 5 ,10 chia hết cho 5

suy ra năm số tự nhiên lien tiếp chia hết cho5

7 tháng 1 2015

a) gọi 3 số tự nhiên liên tiếp là a ; a+1 ; a+2 ( a thuộc N )

ta có : a+(a+1)+(a+2)=3a+3=3 . ( a + 1 ) chia hết cho 3

vậy tổng của 3 số liên tiếp chia hết cho 3

b) gọi 4 số tự nhiên liên tiếp là a ; a+1 ; a+2 ; a+3 ( a thuộc N )

ta có : a+(a+1)+(a+2)+(a+3)=4a + 6 ko chia hết cho 4 ( 6 ko chia hết cho 4 )

câu c) làm tương tự như câu a)

14 tháng 7 2023

Ba số tự nhiên liên tiếp có dạng:

\(x\)\(x+1\)\(x\) + 2 ( \(x\) là số tự nhiên)

Tổng ba số tự nhiên liên tiếp có dạng:

\(x\) + \(x+1+x+2\) = 3\(x\) + 3 = 3(\(x\) + 1) ⋮ 3 (đpcm)

Gọi ba số tự nhiên liên tiếp là: a,a+1,a+2�,�+1,�+2

Tổng của ba số tự nhiên liên tiếp là: a + a+1+a+2=(a+a+a)+(1+2)� + �+1+�+2=�+�+�+1+2 =(3a+3)=3�+3

chia hết cho 3 (Tính chất chia hết của một tổng).

27 tháng 1 2017

Gọi 3 số tự nhiên liên tiếp đó là a,a+1,a+2.

Ta có:(a+a+1+a+2)=3a+3

Mà 3a chia hết cho 3

3 chia hết cho 3

Suy ra 3a+3 chia hết cho 3

27 tháng 1 2017

vì 3 số có trung bình cộng chia được cho 3 nên phải chia được cho 3