tính
\(\frac{1}{5}\)+\(\frac{1}{10}\)+\(\frac{1}{16}\)+...+\(\frac{1}{120}\)
help me
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\)
\(2A=1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32}\)
\(2A+A=\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{8}-\frac{1}{16}+\frac{1}{32}-\frac{1}{64}\right)+\left(1-\frac{1}{2}+\frac{1}{4}-\frac{1}{8}+\frac{1}{16}-\frac{1}{32}\right)\)
\(3A=1-\frac{1}{64}\)
\(3A=\frac{63}{64}\Rightarrow A=\frac{63}{64}\div3=\frac{21}{64}< \frac{1}{3}\)
Đặt A = \(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)
3A = \(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)
3A - A = (\(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}\)) - (\(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\))
2A = 1 - \(\frac{1}{729}\) = \(\frac{728}{729}\)
A = \(\frac{728}{729}:2=\frac{364}{729}\)
a, Gọi biểu thức đó là A
Ta có :
A = \(\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}\)
A x 3 = \(1+\frac{1}{3}+\frac{1}{9}+\frac{1}{27}+\frac{1}{81}+\frac{1}{243}+\frac{1}{729}-\frac{1}{729}\)
A x 3 = \(1+A-\frac{1}{729}\)
A x 3 = \(\frac{728}{729}+A\)
A x 2 + A = \(\frac{728}{729}+A\)
A x 2 = \(\frac{728}{729}\)(bỏ A ở cả 2 vế)
A = \(\frac{728}{729}\div2=\frac{364}{729}\)
Đáp án = \(\frac{364}{729}\)
b, Phần này mình nghĩ là bạn sai đề rồi. Phải là \(\frac{45\times16-17}{45\times15+28}\)
\(A=\frac{3}{4}.\frac{8}{9}.\frac{15}{16}...\frac{120}{121}=\frac{3.8.15...120}{4.9.16...121}\)
\(=\frac{\left(1.3\right).\left(2.4\right).\left(3.5\right)...\left(10.12\right)}{\left(2.2\right).\left(3.3\right).\left(4.4\right)...\left(11.11\right)}\)
\(=\frac{\left(1.2.3...10\right).\left(3.4.5...12\right)}{\left(2.3.4...11\right).\left(2.3.4...11\right)}=\frac{1.12}{11.2}=\frac{6}{11}\)
ta có :
A=\(\left(-\frac{3}{4}\right)\left(-\frac{8}{9}\right)\left(-\frac{15}{16}\right)...\left(-\frac{120}{121}\right)\)(có 10 số hạng)
= \(\frac{3\cdot8\cdot15\cdot...\cdot120}{4\cdot9\cdot16\cdot...\cdot121}=\frac{\left(1.3\right)\left(2\cdot4\right)\left(3\cdot5\right)\cdot...\cdot\left(10\cdot12\right)}{2^2\cdot3^2\cdot4^2\cdot...\cdot11^2}=\frac{\left(1\cdot2\cdot3\cdot...\cdot10\right)\left(3\cdot4\cdot5\cdot...\cdot12\right)}{\left(2\cdot3\cdot4\cdot..\cdot11\right)\left(2\cdot3\cdot4\cdot..\cdot11\right)}\)
=\(\frac{12}{11\cdot2}=\frac{12}{22}\)
Đặt \(A=\frac{1}{1.2.3}+\frac{1}{3.5.7}+...+\frac{1}{45.47.49}\)
\(\Rightarrow4A=\frac{4}{1.3.5}+\frac{4}{3.5.7}+...+\frac{4}{45.47.49}\)
\(=\frac{1}{1.3}-\frac{1}{3.5}+\frac{1}{3.5}-\frac{1}{5.7}+...+\frac{1}{45.47}-\frac{1}{47.49}\)
\(=\frac{1}{3}-\frac{1}{47.49}\)
\(\Rightarrow A=\frac{\frac{1}{3}-\frac{1}{47.49}}{4}=\frac{575}{6909}\)
A=\(\frac{1\cdot\left(\frac{1}{3}-\frac{1}{7}-\frac{1}{13}\right)}{2\cdot\left(\frac{1}{3}-\frac{1}{7}-\frac{1}{13}\right)}\cdot\frac{\frac{3}{4}}{1}\)
A=\(\frac{1}{2}\cdot\frac{3}{4}\)=\(\frac{3}{8}\)
Mình chỉ biết Ra kết quả thôi chứ ko bít cách tính : là 3/8
HELP ME !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
Xét biểu thức phụ : \(\frac{1}{\left(2n+3\right)\sqrt{2n+1}+\left(2n+1\right)\sqrt{2n+3}}=\frac{1}{\sqrt{2n+1}.\sqrt{2n+3}\left(\sqrt{2n+1}+\sqrt{2n+3}\right)}\)
\(=\frac{\sqrt{2n+3}-\sqrt{2n+1}}{\sqrt{2n+1}.\sqrt{2n+3}\left[\left(2n+3\right)-\left(2n+1\right)\right]}\)
\(=\frac{\sqrt{2n+3}-\sqrt{2n+1}}{2\sqrt{2n+1}.\sqrt{2n+3}}=\frac{1}{2}\left(\frac{1}{\sqrt{2n+1}}-\frac{1}{\sqrt{2n+3}}\right)\)với \(n\ge1\)
Áp dụng : \(S=\frac{1}{3\sqrt{1}+1\sqrt{3}}+\frac{1}{3\sqrt{5}+5\sqrt{3}}+\frac{1}{5\sqrt{7}+7\sqrt{5}}+...+\frac{1}{101\sqrt{103}+103\sqrt{101}}\)
\(=\frac{1}{2}\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{3}}\right)+\frac{1}{2}\left(\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{5}}\right)+\frac{1}{2}\left(\frac{1}{\sqrt{5}}-\frac{1}{\sqrt{7}}\right)+...+\frac{1}{2}\left(\frac{1}{\sqrt{101}}-\frac{1}{\sqrt{103}}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{5}}+\frac{1}{\sqrt{5}}-\frac{1}{\sqrt{7}}+...+\frac{1}{\sqrt{101}}-\frac{1}{\sqrt{103}}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{\sqrt{103}}\right)\)