K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 8 2019

Trả lời

Nếu đề là so sánh A và B thì mk nghĩ:

Tất nhiên A > B rồi.

Còn nếu đề không phải như zậy thì mk sai nhé !

XL vì làm phiền bạn !

19 tháng 8 2019

ta có ;

\(A=3^0+3^1+3^2+....+3^{19}\)

\(A=1+3^1+3^2+....+3^{19}\)

\(3A=3+3^2+3^3+....+3^{19}\)

=>\(3A-A=3^{20}-1\)

=>\(A=\frac{3^{20}-1}{2}< 3^{20}-1=B\)

=>\(A< B\)

Vậy \(A< B\)

chúc bn học tốt!

14 tháng 11 2023

3A = 3+32+33+34+...+320+321

3A - A = (3+32+33+34+...+320+321) - ( 1+3+32+33+...+319+220)

2A = 321-1

A   =  \(\dfrac{31^{21}-1}{2}\)

2 tháng 8 2018

\(30A=\frac{30^{32}+30}{30^{32}+1}=\frac{30^{32}+1+29}{30^{32}+1}=1+\frac{29}{30^{32}+1}\)

\(30B=\frac{30^{33}+30}{30^{33}+1}=\frac{30^{33}+1+29}{30^{33}+1}=1+\frac{29}{30^{33}+1}\)

Vì \(\frac{29}{30^{32}+1}>\frac{29}{30^{33}+1}\) nên \(1+\frac{29}{30^{32}+1}>1+\frac{29}{30^{33}+1}\Rightarrow30A>30B\Rightarrow A>B\)

Vậy \(A>B.\)

Chúc bạn học tốt.

14 tháng 8 2023

1.

a.\(A=1+2^1+2^2+2^3+...+2^{2007}\)

\(2A=2+2^2+2^3+....+2^{2008}\)

b. \(A=\left(2+2^2+2^3+...+2^{2008}\right)-\left(1+2^1+2^2+..+2^{2007}\right)\)

\(=2^{2008}-1\) (bạn xem lại đề)

 

2.

\(A=1+3+3^1+3^2+...+3^7\)

a. \(2A=2+2.3+2.3^2+...+2.3^7\)

b.\(3A=3+3^2+3^3+...+3^8\)

\(2A=3^8-1\)

\(=>A=\dfrac{2^8-1}{2}\)

 

3

.\(B=1+3+3^2+..+3^{2006}\)

a. \(3B=3+3^2+3^3+...+3^{2007}\)

b. \(3B-B=2^{2007}-1\)

\(B=\dfrac{2^{2007}-1}{2}\)

 

4.

Sửa: \(C=1+4+4^2+4^3+4^4+4^5+4^6\)

a.\(4C=4+4^2+4^3+4^4+4^5+4^6+4^7\)

b.\(4C-C=4^7-1\)

\(C=\dfrac{4^7-1}{3}\)

 

5.

\(S=1+2+2^2+2^3+...+2^{2017}\)

\(2S=2+2^2+2^3+2^4+...+2^{2018}\)

\(S=2^{2018}-1\)

4:

a:Sửa đề: C=1+4+4^2+4^3+4^4+4^5+4^6

=>4*C=4+4^2+...+4^7

b: 4*C=4+4^2+...+4^7

C=1+4+...+4^6

=>3C=4^7-1

=>\(C=\dfrac{4^7-1}{3}\)

5:

2S=2+2^2+2^3+...+2^2018

=>2S-S=2^2018-1

=>S=2^2018-1

17 tháng 4 2023

Áp dụng tính chất : Nếu \(\dfrac{a}{b}< 1\) thì \(\dfrac{a}{b}< \dfrac{a+n}{b+n}\) ( a; b; n ϵ N , b; n ≠ 0 )

Ta có \(\dfrac{2023^{31}+5}{2023^{32}+5}< 1\)

⇒ \(B=\dfrac{2023^{31}+5}{2023^{32}+5}< \dfrac{2023^{31}+5+2018}{2023^{32}+5+2018}=\dfrac{2023^{31}+2023}{2023^{32}+2023}=\dfrac{2023\left(2023^{30}+1\right)}{2023\left(2023^{31}+1\right)}=\dfrac{2023^{30}+1}{2023^{31}+1}=A\)Vậy A > B

17 tháng 4 2023

Ta có 2023A = \(\dfrac{2023.\left(2023^{30}+5\right)}{2023^{31}+5}=\dfrac{2023^{31}+5.2023}{2023^{31}+5}\)

\(=1+\dfrac{2022.5}{2023^{31}+5}\)

Lại có 2023B = \(\dfrac{2023.\left(2023^{31}+5\right)}{2023^{32}+5}=\dfrac{2023^{32}+2023.5}{2023^{32}+5}\)

\(=1+\dfrac{2022.5}{2023^{32}+5}\)

Dễ thấy 202331 + 5 < 202332 + 5

\(\Leftrightarrow\dfrac{2022.5}{2023^{31}+5}>\dfrac{2022.5}{2023^{32}+5}\)

\(\Leftrightarrow1+\dfrac{2022.5}{2023^{31}+5}>1+\dfrac{2022.5}{2023^{32}>5}\)

\(\Leftrightarrow2023A>2023B\Leftrightarrow A>B\)

29 tháng 12 2022

bạn hình như viết sai đề

 

\(2023A=\dfrac{2023^{31}+4046}{2023^{31}+2}=1+\dfrac{4044}{2023^{31}+2}\)

\(2023B=\dfrac{2023^{32}+4046}{2023^{32}+2}=1+\dfrac{4044}{2023^{32}+2}\)

mà 2023^31+2<2023^32+2

nên A>B

3 tháng 7 2016

Ta có 1930<1931 
         \(\left(\frac{5}{19}\right)^{31}< \left(\frac{5}{19}\right)^{32}\)
          5=5
công vế theo vế ta có
\(19^{30}+\left(\frac{5}{19}\right)^{31}+5< 19^{31}+\left(\frac{5}{19}\right)^{32}+5\)
Vậy A<B

27 tháng 1 2023

=))