Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
minh lam cau b) roi dc co 2/3 thoy ban tham khao nhe phan () la minh giai thich nha dung viet vo bai !!
2x=3y ; 5y = 7z
+) 10x=15y=21z ( Quy dong)
+)10x/210 = 15y/210 = 21z/210 ( BC)
+) x/21 = y/14 = z/10 ( Rut gon)
+) 3x/63 = 7y/98 = 5z/50 = 3x-7y+ 5z / 63 - 98 - 50 = -30/14 = -2
+ x/21 = 2 => ............ phan nay minh chua xong neu xong thi minh pm not cho
từ 2x = 3y;4y = 7z \(\Rightarrow\frac{x}{3}=\frac{y}{2};\frac{y}{7}=\frac{z}{4}\)
Ta có:\(\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{3}:7=\frac{y}{2}:7\) hay \(\frac{x}{21}=\frac{y}{14}\)(1)
Ta có: \(\frac{y}{7}=\frac{z}{4}\Rightarrow\frac{y}{7}:2=\frac{z}{4}:2\) hay \(\frac{y}{14}=\frac{z}{8}\)(2)
Từ (1) và (2) ta có:\(\frac{x}{21}=\frac{y}{14}=\frac{z}{8}\)(3)
75 - 3x + 5y - 4z = 0
\(\Rightarrow\) 3x + 5y - 4z = 75 (4)
Từ (3) và (4) ta có: \(\frac{x}{21}=\frac{y}{14}=\frac{z}{8}=\frac{3x+5y-4z}{3.21+5.14-4.8}=\frac{75}{101}\)
Vậy: \(\frac{x}{21}=\frac{75}{101}\Rightarrow x=15,59405941\)
\(\frac{y}{14}=\frac{75}{101}\Rightarrow y=10,3960396\)
\(\frac{z}{8}=\frac{75}{101}\Rightarrow z=5,940594049\)
bạn xem lại đề, số lẻ quá
a.
$7x-2y=5x-3y$
$\Leftrightarrow 2x=-y$. Thay vào điều kiện số 2 ta có:
$-y+3y=20$
$2y=20$
$\Rightarrow y=10$.
$x=\frac{-y}{2}=\frac{-10}{2}=-5$
b.
$2x=3y\Rightarrow \frac{x}{3}=\frac{y}{2}$
$3y=4z-2y\Rightarrow 5y=4z\Rightarrow \frac{y}{4}=\frac{z}{5}$
$\Rightarrow \frac{x}{6}=\frac{y}{4}=\frac{z}{5}$
Áp dụng tính chất dãy tỉ số bằng nhau:
$\frac{x}{6}=\frac{y}{4}=\frac{z}{5}=\frac{x+y+z}{6+4+5}=\frac{45}{15}=3$
$\Rightarrow x=6.3=18; y=4.3=12; z=5.3=15$
a) Vì \(2x=3y\Rightarrow\dfrac{x}{3}=\dfrac{y}{2}\Rightarrow\dfrac{x}{21}=\dfrac{y}{14}\) (1)
Vì \(5y=7z\Rightarrow\dfrac{y}{7}=\dfrac{z}{5}\Rightarrow\dfrac{y}{14}=\dfrac{z}{10}\) (2)
Từ (1) và (2) \(\Rightarrow\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}\)
Mà \(3x-7y+5z=30\)
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\Rightarrow\dfrac{x}{21}=\dfrac{y}{14}=\dfrac{z}{10}=\dfrac{3x}{63}=\dfrac{7y}{98}=\dfrac{5z}{50}=\dfrac{3x-7y+5z}{63-98+50}=\dfrac{30}{15}=2\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{x}{21}=2\\\dfrac{y}{14}=2\\\dfrac{z}{10}=2\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=42\\y=28\\z=20\end{matrix}\right.\)
Vậy \(\left\{{}\begin{matrix}x=42\\y=28\\z=20\end{matrix}\right.\).
b) Cách làm giống y hệt câu a nhé! Không khác đâu vì \(3x-7y+5z=3x+5z-7y\), nó chỉ đổi đổi vị trí các số hạng thoy.
a) Giải:
Ta có: \(2x=3y=4z\Rightarrow\frac{2x}{12}=\frac{3y}{12}=\frac{4z}{12}\Rightarrow\frac{x}{6}=\frac{y}{4}=\frac{z}{3}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{6}=\frac{y}{4}=\frac{z}{3}=\frac{2x}{12}=\frac{3y}{12}=\frac{5z}{15}=\frac{2x+3y-5z}{12+12-15}=\frac{-1,8}{9}=-0,2\)
+) \(\frac{x}{6}=-0,2\Rightarrow x=-1,2\)
+) \(\frac{y}{4}=-0,2\Rightarrow y=-0,8\)
+) \(\frac{z}{3}=-0,2\Rightarrow z=-0,6\)
Vậy bộ số \(\left(x;y;z\right)\) là \(\left(-1,2;-0,8;-0,6\right)\)
b) Giải:
Ta có: \(2x=5y\Rightarrow\frac{x}{5}=\frac{y}{2}\Rightarrow\frac{x}{20}=\frac{y}{8}\)
\(3y=8z\Rightarrow\frac{y}{8}=\frac{z}{3}\)
\(\Rightarrow\frac{x}{20}=\frac{y}{8}=\frac{z}{3}\)
Áp dụng t/c dãy tỉ số bằng nhau:
\(\frac{x}{20}=\frac{y}{8}=\frac{z}{3}=\frac{2y}{16}=\frac{x+2y+z}{20+16+3}=\frac{-39}{39}=-1\)
+) \(\frac{x}{20}=-1\Rightarrow x=-20\)
+) \(\frac{y}{8}=-1\Rightarrow y=-8\)
+) \(\frac{z}{3}=-1\Rightarrow z=-3\)
Vậy bộ số \(\left(x;y;z\right)\) là \(\left(-20;-8;-3\right)\)
Ta có :
\(2x=3y=4x\)
\(\Rightarrow\frac{2x}{12}=\frac{3y}{12}=\frac{4z}{12}\)
\(\Rightarrow\frac{2x}{12}=\frac{3y}{12}=\frac{5z}{15}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có :
\(\frac{2x}{12}=\frac{3y}{12}=\frac{5z}{15}=\frac{2x+3y-5z}{12+12-15}=-\frac{1,8}{9}=-\frac{1}{5}\)
\(\Rightarrow\begin{cases}x=-\frac{6}{5}\\y=-\frac{4}{5}\\z=-\frac{3}{5}\end{cases}\)
b)
\(\begin{cases}2x=5y\\3y=8z\end{cases}\)
\(\Rightarrow\begin{cases}\frac{x}{5}=\frac{y}{2}\\\frac{y}{8}=\frac{z}{3}\end{cases}\)
\(\Rightarrow\begin{cases}\frac{x}{20}=\frac{y}{8}\\\frac{y}{8}=\frac{z}{3}\end{cases}\)
\(\Rightarrow\frac{x}{20}=\frac{y}{8}=\frac{z}{3}\)
\(\Rightarrow\frac{x}{20}=\frac{2y}{16}=\frac{z}{3}\)
Áp dụng tc của dãy tỉ số bằng nhau ta có :
\(\Rightarrow\frac{x}{20}=\frac{2y}{16}=\frac{z}{3}=\frac{2y+x+z}{16+20+3}=-\frac{39}{39}=-1\)
\(\Rightarrow\begin{cases}x=-20\\y=-8\\z=-3\end{cases}\)
\(2x=3y\Rightarrow\frac{x}{3}=\frac{y}{2};5y=7z\Rightarrow\frac{y}{7}=\frac{z}{5}\)
\(\Rightarrow\frac{x}{3}=\frac{y}{2}\Rightarrow\frac{x}{3}=\frac{7y}{14};\frac{y}{7}=\frac{z}{5}\Rightarrow\frac{2y}{14}=\frac{z}{5}\)
\(\Rightarrow\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\Rightarrow\frac{3x}{63}=\frac{5y}{70}=\frac{7z}{70}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{3x}{63}=\frac{5y}{70}=\frac{7z}{70}=\frac{3x+5y-7z}{63+70-70}=\frac{30}{63}=\frac{10}{21}\)
\(\frac{3x}{63}=\frac{10}{21}\Rightarrow x=\frac{10}{21}.63:3=10\)
\(\frac{5y}{70}=\frac{10}{21}\Rightarrow y=\frac{10}{21}.70:5=\frac{20}{3}\)
\(\frac{7z}{70}=\frac{10}{21}\Rightarrow z=\frac{10}{21}.70:7=\frac{100}{21}\)
Từ \(2x=3y\)\(\Rightarrow\)\(\frac{x}{3}=\frac{y}{2}=\frac{x}{3}.\frac{1}{7}=\frac{y}{2}.\frac{1}{7}\)\(\Rightarrow\)\(\frac{x}{21}=\frac{y}{14}\)( 1 )
Từ \(5y=7z\)\(\Rightarrow\)\(\frac{y}{7}=\frac{z}{5}=\frac{y}{7}.\frac{1}{2}=\frac{z}{5}.\frac{1}{2}\)\(\Rightarrow\)\(\frac{y}{12}=\frac{z}{10}\)( 2 )
Từ ( 1 ) và ( 2 ) suy ra : \(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}\)
Đặt \(\frac{x}{21}=\frac{y}{14}=\frac{z}{10}=k\)\(\Rightarrow\hept{\begin{cases}x=21k\\y=14k\\z=10k\end{cases}}\)
Thay vào ta được :
\(2.21k-3.14k+4.10k=350\)
\(42k-42k+40k=350\)
\(40k=350\)
\(k=\frac{35}{4}\)
\(\Rightarrow\hept{\begin{cases}x=21.\frac{35}{4}\\y=14.\frac{35}{4}\\z=10.\frac{35}{4}\end{cases}}\)\(\Rightarrow\hept{\begin{cases}x=\frac{735}{4}\\y=\frac{245}{2}\\z=\frac{175}{2}\end{cases}}\)