Cho hàm số y = \(-\frac{2}{5}\)x - 3
CMR hàm số nghịch biến trên R
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a Để hàm số y đồng biến trên R
thì k2+2/k-3 > 0 đk k khác 3
mà k2+2>0 thì k-3 > 0 suy ra k>3
b Để hàm số Y đồng biến trên R
thì k+ căn 2/ k2+ căn 3 < 0 mà x2+ căn 3 >0 suy ra k< - căn 2
Hàm số y = (3 - 2 )x + 1 có hệ số a = 3 - 2 , hệ số b = 1
Ta có: a = 3 - 2 > 0 nên hàm số đồng biến trên R
a)
Ta thấy \(\sqrt{3}-2< 0\) nên hàm số trên nghịch biến trên R
b)
\(\sqrt{3}-7=\left(\sqrt{3}-2\right)x+5\)
\(\Leftrightarrow\sqrt{3}-12=\left(\sqrt{3}-2\right)x\)
\(\Leftrightarrow x=\dfrac{\sqrt{3}-12}{\sqrt{3}-2}\)
Theo mình:
để hàm số đồng biến, đk cần là y'=0.
a>0 và \(\Delta'< 0\)
nghịch biến thì a<0
vì denta<0 thì hầm số cùng dấu với a
mình giải được câu a với b
câu c có hai cực trị thì a\(\ne\)0, y'=0, denta>0 (để hàm số có hai nghiệm pb)
câu d dùng viet
câu e mình chưa chắc lắm ^^
Bài 1:
Để hàm số y=(2-m)x-2 là hàm số bậc nhất thì 2-m<>0
=>m<>2
a=2-m
b=-2
Bài 2:
a: Để hàm số y=(m-5)x+1 đồng biến trên R thì m-5>0
=>m>5
b: Để hàm số y=(m-5)x+1 nghịch biến trên R thì m-5<0
=>m<5
Bài 3:
a: Để (d1)//(d2) thì \(\left\{{}\begin{matrix}3-m=2\\2\ne m\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m=1\\m\ne2\end{matrix}\right.\Leftrightarrow m=1\)
b: Để (d1) cắt (d2) thì \(3-m\ne2\)
=>\(m\ne1\)
c: Để (d1) cắt (d2) tại một điểm trên trục tung thì
\(\left\{{}\begin{matrix}3-m\ne2\\m=2\end{matrix}\right.\)
=>\(\left\{{}\begin{matrix}m\ne1\\m=2\end{matrix}\right.\)
=>m=2
Với hàm số y = ax + b (a khác 0) thì hàm số nghịch biến trên tập hợp R khi a < 0. Vì \(-\frac{2}{5}<0\) nên hàm số nghịch biến trên tập hợp R.
1.
\(f'\left(x\right)=\left(x^2-1\right)\left(x-2\right)^2\left(x-3\right)\) có các nghiệm bội lẻ \(x=\left\{-1;1;3\right\}\)
Sử dụng đan dấu ta được hàm đồng biến trên các khoảng: \(\left(-1;1\right);\left(3;+\infty\right)\)
Hàm nghịch biến trên các khoảng \(\left(-\infty;-1\right);\left(1;3\right)\)
2.
\(y'=4x^3-4x=0\Rightarrow\left[{}\begin{matrix}x=-1\\x=0\\x=1\end{matrix}\right.\)
Lập bảng xét dấu y' ta được hàm đồng biến trên \(\left(-1;0\right);\left(1;+\infty\right)\)
Hàm nghịch biến trên \(\left(-\infty;-1\right);\left(0;1\right)\)
y=-2+3
y1=-2x1+3
y2=-2x2+3 HUHU MIK MOI LOP 7 MA LAM TOAN LOP 9 DO MOI NGUOI K DE UNG HO MIK NHE
y2-y1=-2(x2-x1)
x2>x1=>x2-x1>0=>-x2(x2-x1)<0
=>y2-y1<0
=>y2<y1=>ham so dot bien (dpcm)