giải hộ mình với
X:Y:Z=1:3:4 VÀ -3X+Y+2Z=26
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
3x + y - 2x = 14
x : y : z = 3 : 8 : 5 hay \(\frac{x}{3}=\frac{y}{8}=\frac{z}{5}\)
Áp dụng tính chất dãy tỉ số bàng nhau , ta có :
\(\frac{x}{3}=\frac{y}{8}=\frac{z}{5}=\frac{3x}{9}=\frac{2z}{10}=\frac{3x+y-2z}{9+8-10}=\frac{14}{7}=2\)
\(\Rightarrow\hept{\begin{cases}x=2.3=6\\y=2.8=16\\z=2.5=10\end{cases}}\)
TL
Có:
x3=y8=z5=3x9=2z10
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
x3=y8=z5=3x9=2z10=3x+y−2z9+8−10=147=2
x3=2⇒x=6x3=2⇒x=6
y8=2⇒y=16
z5=2⇒z=10
HT
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{3}=\dfrac{y}{5}=\dfrac{z}{7}=\dfrac{3x-2z}{3\cdot3-2\cdot7}=\dfrac{15}{-5}=-3\)
Do đó: x=-9; y=-15; z=-21
+) Áp dụng t/c của dãy tỉ số bằng nhau, ta có:
\(\frac{x}{3}=\frac{y}{4}\Rightarrow\frac{x^2}{9}=\frac{y^2}{16}=\frac{x^2+y^2}{9+16}=\frac{100}{25}=4\)
=> \(\hept{\begin{cases}\frac{x^2}{9}=4\\\frac{y^2}{16}=4\end{cases}}\) => \(\hept{\begin{cases}x^2=4.9=36\\y^2=4.16=64\end{cases}}\) => \(\hept{\begin{cases}x=\pm6\\y=\pm8\end{cases}}\)
Vậy ...
1. Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{x-1}{2}=\frac{y+3}{4}=\frac{z-5}{6}=\frac{3\left(x-1\right)}{6}=\frac{4\left(y+3\right)}{16}=\frac{5\left(z-5\right)}{30}\)
\(=\frac{3x-3}{6}=\frac{4y+12}{16}=\frac{5z-25}{30}=\frac{5z-25-3x+3-4y-12}{30-6-16}\)
\(=\frac{\left(5z-3x-4y\right)-34}{8}=\frac{50-34}{8}=\frac{16}{8}=2\)
\(\Rightarrow\frac{x-1}{2}=2\)\(\Rightarrow x-1=4\)\(\Rightarrow x=5\)
\(\frac{y+3}{4}=2\)\(\Rightarrow y+3=8\)\(\Rightarrow y=5\)
\(\frac{z-5}{6}=2\)\(\Rightarrow z-5=12\)\(\Rightarrow z=17\)
Vậy \(x=5\); \(y=5\)và \(z=17\)
2. Từ \(2a=3b\)\(\Rightarrow\frac{a}{3}=\frac{b}{2}\)\(\Rightarrow\frac{a}{3}.\frac{1}{7}=\frac{b}{2}.\frac{1}{7}=\frac{a}{21}=\frac{b}{14}\)(1)
Từ \(5b=7c\)\(\Rightarrow\frac{b}{7}=\frac{c}{5}\)\(\Rightarrow\frac{b}{7}.\frac{1}{2}=\frac{c}{5}.\frac{1}{2}=\frac{b}{14}=\frac{c}{10}\)(2)
Từ (1) và (2) \(\Rightarrow\frac{a}{21}=\frac{b}{14}=\frac{c}{10}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{21}=\frac{b}{14}=\frac{c}{10}=\frac{3a}{63}=\frac{7b}{98}=\frac{5c}{50}\)
\(=\frac{3a-7b+5c}{63-98+50}=\frac{30}{15}=2\)
\(\Rightarrow a=21.2=42\); \(b=14.2=28\); \(z=10.2=20\)
Vậy \(a=42\); \(b=28\); \(z=20\)
\(3x=2y=z\Rightarrow\frac{z}{6}=\frac{x}{2}=\frac{y}{3}\)
Áp dụng tính chất của dãy tỉ số bằng nhau
\(\frac{z}{6}=\frac{x}{2}=\frac{y}{3}=\frac{x+y+z}{6+2+3}=\frac{99}{11}=9\)
\(\Rightarrow\hept{\begin{cases}z=54\\x=18\\y=27\end{cases}}\)
Vì \(X:Y:Z=1:3:4\Rightarrow\frac{X}{1}=\frac{Y}{3}=\frac{Z}{4}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{X}{1}=\frac{Y}{3}=\frac{Z}{4}=\frac{-3X}{-3}=\frac{2Z}{8}=\frac{-3X+Y+2Z}{-3+3+8}=\frac{26}{8}=\frac{13}{4}\)
\(\frac{-3X}{-3}=\frac{13}{4}\Rightarrow X=\frac{13}{4}\)
\(\frac{Y}{3}=\frac{13}{4}\Rightarrow Y=\frac{39}{4}\)
\(\frac{2Z}{8}=\frac{13}{4}\Rightarrow Z=13\)
STUDY WELL
Bài làm
Vì x : y : z = 1 : 3 : 4
=> \(\frac{x}{1}=\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{-3x}{-3}=\frac{y}{3}=\frac{2z}{8}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\frac{-3x}{-3}=\frac{y}{3}=\frac{2z}{8}\Rightarrow\frac{-3x+y+2z}{-3+3+8}=\frac{26}{8}=\frac{13}{4}\)
Do đó: \(\hept{\begin{cases}\frac{x}{1}=\frac{13}{4}\Rightarrow x=\frac{13}{4}\\\frac{y}{3}=\frac{13}{4}\Rightarrow y=\frac{39}{4}\\\frac{z}{4}=\frac{13}{4}\Rightarrow z=\frac{52}{4}=13\end{cases}}\)
Vậy \(x=\frac{13}{4},y=\frac{39}{4},z=13\)
# Học tốt #