chứng minh a^3+b^3+a^3c+b^3c-abc=0, cho a+b+c=0
K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Những câu hỏi liên quan
![](https://rs.olm.vn/images/avt/0.png?1311)
20 tháng 12 2018
Hình như trong này có bài giải bạn vào xem nhée https://cunghocvui.com/danh-muc/toan-lop-10
![](https://rs.olm.vn/images/avt/0.png?1311)
17 tháng 10 2018
Ta chứng minh:
\(\frac{1}{1-3a}\ge256a^3\)
\(\Leftrightarrow\left(4x-1\right)^2\left(48x^2+8x+1\right)\ge0\)đúng
\(\Rightarrow VT\ge256a^3+256b^3+256c^3=\frac{256.3}{64}=12\)
![](https://rs.olm.vn/images/avt/0.png?1311)
29 tháng 2 2020
Ta có :
a3b3+2b3c3+3a3c3=b3(a3+2c3)+3a3c3a3b3+2b3c3+3a3c3=b3(a3+2c3)+3a3c3
Từ a3+b3+c3=0⇒a3+2c3=c3−b3a3+b3+c3=0⇒a3+2c3=c3−b3, thì:
b3(c3−b3)+3a3c3=−b6+c3(b3+3a3)b3(c3−b3)+3a3c3=−b6+c3(b3+3a3)
Và từ a3+b3+c3=0⇒b3+3a3=2a3−c3a3+b3+c3=0⇒b3+3a3=2a3−c3
Suy ra −b6+c3(2a3−c3)=−(b3−c3)2≤0
AM
1
LT
1