K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
8 tháng 7 2017

Lời giải:

Áp dụng BĐT AM-GM có:

\(\sqrt[3]{a+b}=\sqrt[3]{\frac{9}{4}}\sqrt[3]{(a+b).\frac{4}{9}}\leq \sqrt[3]{\frac{9}{4}}\left ( \frac{a+b+\frac{2}{3}+\frac{2}{3}}{3} \right )\)

Thực hiện tương tự với các biểu thức còn lại và cộng theo vế:

\(\Rightarrow A\leq \sqrt[3]{\frac{9}{4}}\left [ \frac{2(a+b+c)+4}{3} \right ]=2\sqrt[3]{\frac{9}{4}}\)

Vậy \(A_{\max}=2\sqrt[3]{\frac{9}{4}}\Leftrightarrow a=b=c=\frac{1}{3}\)

20 tháng 6 2018

Trả lời:

a/ \(a+b=a-\left(-b\right)=\left(\sqrt{a}\right)^2-\left(\sqrt{b}\right)^2=\left(\sqrt{a}+\sqrt{b}\right).\left(\sqrt{a}-\sqrt{b}\right)\)

b/ \(5-2a=\left(\sqrt{5}\right)^2-\left(\sqrt{2a}\right)^2=\left(\sqrt{5}-\sqrt{2a}\right).\left(\sqrt{5}+\sqrt{2a}\right)\)

c/ \(a-6\sqrt{a}=\left(\sqrt{a}\right)^2-6\sqrt{a}=\sqrt{a}.\left(\sqrt{a}-6\right)\)

d/ \(\left(\sqrt{a}\right)^3-3a+3\sqrt{a}-1=\left(\sqrt{a}\right)^3-3\left(\sqrt{a}\right)^2+3\sqrt{a}-1=\left(\sqrt{a}-1\right)^3\)

21 tháng 6 2018

cảm ơn ạ !!