K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 8 2019

A=x2y2+15x2y-18xy2=xy(xy+15x+18y)

9 tháng 11 2017

a)\(\dfrac{12x^3y^2}{18xy^5}\)=\(\dfrac{2x^2}{3y^3}\)

b)\(\dfrac{15x.\left(x+5\right)^2}{20x^2.\left(x+5\right)}\)=\(\dfrac{3.5x\left(x+5\right)}{4x.5x.\left(x+5\right)}\)=\(\dfrac{3\left(x+5\right)}{4x}\)

10 tháng 10 2019

\(\left(y-3x\right)\left(3x+y\right)+18xy-9\left(x+y\right)^2\)

=\(\left(y-3x\right)\left(y+3x\right)+18xy-9\left(x+y\right)^2\)

\(=y^2-9x^2+18xy-9\left(x+y\right)^2\)

\(=y^2-9x^2+18xy-9\left(x^2+2xy+y^2\right)\)

\(=y^2-9x^2+18xy-9x^2-18xy-9y^2\)

\(=-8y^2\)

10 tháng 10 2019

tks bạn nha

16 tháng 12 2018

\(12x^2y-18xy^2-30y^2=6y\left(2x^2-3xy-5y\right)\)

\(d,5\left(x-y\right)-y\left(x-y\right)=\left(5-y\right)\left(x-y\right)\)

28 tháng 7 2017

Câu 3:

a, Ta có: \(n^2\left(n+1\right)+2n\left(n+1\right)\)

\(=\left(n^2+2n\right)\left(n+1\right)=n\left(n+1\right)\left(n+2\right)⋮6\forall n\in Z\) ( do tích của 3 số liên tiếp chia hết cho 6 )

\(\Rightarrowđpcm\)

b, \(\left(2n-1\right)^3-\left(2n-1\right)\)

\(=\left(2n-1\right)\left[\left(2n-1\right)^2-1\right]\)

\(=\left(2n-1\right)\left(2n-1-1\right)\left(2n-1+1\right)\)

\(=\left(2n-1\right)\left(2n-2\right)2n⋮8\forall n\in Z\)

\(\Rightarrowđpcm\)

NV
14 tháng 11 2019

Nhận thấy \(x=0\Rightarrow y=0\) là 1 cặp nghiệm và ngược lại

Với \(x;y\ne0\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y+xy\left(x+y\right)=18xy\\x^2+y^2+x^2y^2\left(x^2+y^2\right)=208x^2y^2\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+y+\frac{1}{x}+\frac{1}{y}=18\\x^2+y^2+\frac{1}{x^2}+\frac{1}{y^2}=208\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x+\frac{1}{x}+y+\frac{1}{y}=18\\\left(x+\frac{1}{x}\right)^2+\left(y+\frac{1}{y}\right)^2=212\end{matrix}\right.\)

Đặt \(\left\{{}\begin{matrix}x+\frac{1}{x}=a\\y+\frac{1}{y}=b\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}a+b=18\\a^2+b^2=212\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}a+b=18\\\left(a+b\right)^2-2ab=212\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}a+b=18\\ab=56\end{matrix}\right.\)

Theo Viet đảo, a và b là nghiệm của:

\(t^2-18t+56=0\Rightarrow\left[{}\begin{matrix}t=4\\t=14\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x+\frac{1}{x}=4\\y+\frac{1}{y}=14\end{matrix}\right.\\\left\{{}\begin{matrix}x+\frac{1}{x}=14\\y+\frac{1}{y}=4\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}\left\{{}\begin{matrix}x^2-4x+1=0\\y^2-14y+1=0\end{matrix}\right.\\\left\{{}\begin{matrix}x^2-14x+1=0\\y^2-4y+1=0\end{matrix}\right.\end{matrix}\right.\) \(\Leftrightarrow...\)

d)5.(x-y)-y(x-y)

=(x-y)(5-y)

e) y.(x-z)+7(z-x)

=y.(x-z)-7(x-z)

=(x-z)(y-7)

1/Ghpt\(\left\{{}\begin{matrix}x^2+y^2+x^2y^2=1+2xy\\\left(x-y\right)\left(1+xy\right)=1-xy\end{matrix}\right.\)2/Ghpt\(\left\{{}\begin{matrix}x^2y+y+xy^2+x=18xy\\x^4y^2+y^2+x^2y^4+x^2=208x^2y^2\end{matrix}\right.\)3/Ghpt\(\left\{{}\begin{matrix}\sqrt{x+3}+\sqrt{y+3}=4\\\dfrac{1}{x}+\dfrac{1}{y}=2\end{matrix}\right.\)4/ Cho x,y là nghiệm của hệ phương trình\(\left\{{}\begin{matrix}x+y=m\\x^2+y^2=2m\end{matrix}\right.\)Tìm min và max của A=xy5/cho x,y,z thỏa mãn...
Đọc tiếp

1/Ghpt\(\left\{{}\begin{matrix}x^2+y^2+x^2y^2=1+2xy\\\left(x-y\right)\left(1+xy\right)=1-xy\end{matrix}\right.\)

2/Ghpt\(\left\{{}\begin{matrix}x^2y+y+xy^2+x=18xy\\x^4y^2+y^2+x^2y^4+x^2=208x^2y^2\end{matrix}\right.\)

3/Ghpt\(\left\{{}\begin{matrix}\sqrt{x+3}+\sqrt{y+3}=4\\\dfrac{1}{x}+\dfrac{1}{y}=2\end{matrix}\right.\)

4/ Cho x,y là nghiệm của hệ phương trình

\(\left\{{}\begin{matrix}x+y=m\\x^2+y^2=2m\end{matrix}\right.\)

Tìm min và max của A=xy

5/cho x,y,z thỏa mãn đk

\(\left\{{}\begin{matrix}xy+yz+xz=1\\x^2+y^2+z^2=2\end{matrix}\right.\)

Chứng minh rằng: \(\dfrac{-4}{3}\le x,y,z\le\dfrac{4}{3}\)

6/Ghpt bằng 3 cách\(\left\{{}\begin{matrix}x+y+z=1\\\\x^2+y^2+z^2=1\\x^3+y^3+z^3=1\end{matrix}\right.\)

7/Ghpt\(\left\{{}\begin{matrix}x^3+1=2y\\y^3+1=2x\end{matrix}\right.\)

8/Ghpt\(\left\{{}\begin{matrix}x^2-3y=-2\\y^2-3x=-2\end{matrix}\right.\)

9/Ghpt bằng 2 cách\(\left\{{}\begin{matrix}x+\sqrt{y+3}=3\\y+\sqrt{x+3}=3\end{matrix}\right.\)

10/Ghpt\(\left\{{}\begin{matrix}x+\dfrac{2}{y}=\dfrac{3}{x}\\y+\dfrac{2}{x}=\dfrac{3}{y}\end{matrix}\right.\)

11/Ghpt\(\left\{{}\begin{matrix}\sqrt[3]{3x+5}=y+1\\\sqrt[3]{3y+5}=x+1\end{matrix}\right.\)

12/Ghpt\(\left\{{}\begin{matrix}3x^2y-y^2-2=0\\3y^2x-x^2-2=0\end{matrix}\right.\)

13/Giải các phương trình sau bằng cách đứa về hệ pt đối xứng loại II:

a)\(\left(x^2-3\right)^2-x-3=0\)

b)\(x^2-2=\sqrt{x+2}\)

14/Ghpt:\(\left\{{}\begin{matrix}x^2+y^2+xy=3\\x^2-y^2+xy=1\end{matrix}\right.\)

2
16 tháng 6 2023

loading...  

16 tháng 6 2023

loading...