K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 8 2019

có 

\(a>b\Leftrightarrow a-b>0\) (1)

\(a,b>0\Leftrightarrow2ab>0\)

\(a^2+2ab+b^2>a^2+b^2\Leftrightarrow\left(a+b\right)^2-\left(a^2+b^2\right)>0\) (2)

nhân 1 ,2 thì dc

\(\left(a-b\right)\left\{\left(a+b\right)^2-\left(a^2+b^2\right)\right\}>0\)

\(\frac{\left(a-b\right)\left(a+b\right)^2-\left(a-b\right)\left(a^2+b^2\right)}{\left(a+b\right)\left(a^2+b^2\right)}>0\) " nhân 2 vế cho 1/(a+b(a^2+b^2) 

\(\frac{\left(a-b\right)\left(a+b\right)\left(a+b\right)}{\left(a+b\right)\left(a^2+b^2\right)}-\frac{\left(a-b\right)\left(a^2+b^2\right)}{\left(a+b\right)\left(a^2+b^2\right)}>0\)

\(\frac{a^2-b^2}{a^2+b^2}-\frac{a-b}{a+b}>\frac{0\Leftrightarrow a^2-b^2}{a^2+b^2}>\frac{a-b}{a+b}\)

15 tháng 4 2018

Ta có: \(\frac{a-b}{a+b}=\frac{\left(a-b\right)\left(a+b\right)}{\left(a+b\right)\left(a+b\right)}=\frac{a^2-b^2}{a^2+2ab+b^2}< \frac{a^2-b^2}{a^2+b^2}\)

6 tháng 6 2017

xời làm hoài Câu hỏi của LIVERPOOL - Toán lớp 9 - Học toán với OnlineMath

21 tháng 1 2019

Nếu dùng đạo hàm thì làm thế này

Có \(P=a+b+\frac{1}{a^2}+\frac{1}{b^2}\ge2\sqrt{ab}+\frac{2}{ab}\left(Cauchy\right)\)

                                                      (Dấu '=' khi a = b)

Đặt \(0< t=\sqrt{ab}\le\frac{a+b}{2}\le\frac{1}{2}\)thu được

\(P\ge f\left(t\right)=2y+\frac{2}{t^2}=16t+16t+\frac{2}{t^2}-30t\)

\(\Rightarrow f\left(t\right)\ge3\sqrt[3]{2^9}-\frac{30}{2}=24-15=9\)

Dấu "=" khi \(t=\frac{1}{2}\Leftrightarrow a=b=\frac{1}{2}\)

12 tháng 8 2017

Bài 1:

Cho a,b,c,d là các số thực dương. Tìm giá trị nhỏ nhất của biểu thức: - K2PI – TOÁN THPT | Chia sẻ Tài liệu, đề thi, hỗ trợ giải toán

Bài 2:

Áp dụng BĐT Cauchy-Schwarz ta có:

\(\left(1+1+1\right)\left(\frac{a^2}{b^2}+\frac{b^2}{c^2}+\frac{c^2}{a^2}\right)\ge\left(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\right)^2\)

Cần chứng minh \(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\)

Áp dụng BĐT AM-GM ta có:

\(\frac{a}{b}+\frac{b}{c}+\frac{c}{a}\ge3\sqrt[3]{\frac{a}{b}\cdot\frac{b}{c}\cdot\frac{c}{a}}=3\) (đúng)

Khi a=b=c

13 tháng 8 2017

Thanks

13 tháng 3 2019

Giải thử ạ,sai bỏ qua ạ:

gt ->\(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}=1\)

\(\sqrt{1+a^2}=\sqrt{\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+a^2}=\sqrt{\frac{1}{4}}.\sqrt{4\left(\frac{1}{ab}+\frac{1}{bc}+\frac{1}{ca}+\frac{1}{a^2}\right)}\)

\(\le\frac{4+\frac{4}{a^2}}{4}=1+\frac{1}{a^2}\)

Tương tự và cộng theo vế: \(VT\le2+\frac{1}{a^2}+\frac{1}{b^2}-\sqrt{1+c^2}\)

Ta sẽ c/m: \(\left(\frac{1}{a^2}+\frac{1}{b^2}-\sqrt{1+c^2}\right)< -1\).Tới đây em bí -_-"

13 tháng 3 2019

Ey ya,nhầm