Hãy xác định hàm số y = ax + b biết
Đồ thị hàm số đi qua 2 điểm A( 1; 2 ) và B(3; 4 )
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đồ thị qua \(A\left(1;-1\right)\) \(\Rightarrow-1=a.1+b\Rightarrow-a-b=1\left(1\right)\)
Đồ thị qua \(B\left(2;1\right)\Rightarrow1=a.2+b\Rightarrow-2a-b=-1\left(2\right)\)
Từ \(\left(1\right),\left(2\right)\Rightarrow\left\{{}\begin{matrix}a=2\\b=-3\end{matrix}\right.\)
Vậy hàm số có dạng \(y=2x-3\)
Lời giải:
ĐT $y=ax+b$ đi qua gốc tọa độ $(0;0)$ nên $b=0$
ĐT $y=ax+b=ax$ đi qua điểm $A(-1;-1)$ nên:
$-1=a(-1)\Leftrightarrow a=1$
Vậy $a=1; b=0$
b: Vì đồ thị hàm số đi qua hai điểm P(2;1) và Q(-1;4) nên ta có hệ phương trình:
\(\left\{{}\begin{matrix}2a+b=1\\-a+b=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3a=-3\\b-a=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-1\\b=4+a=3\end{matrix}\right.\)
a: Vì đồ thị hàm số y=ax+b vuông góc với y=3x+1 nên 3a=-1
hay \(a=-\dfrac{1}{3}\)
Vậy: \(y=-\dfrac{1}{3}x+b\)
Thay x=1 và y=2 vào hàm số, ta được:
\(b-\dfrac{1}{3}=2\)
hay \(b=\dfrac{7}{3}\)
a) Đồ thị của hàm số đi qua điểm A(2;1)
\(\Rightarrow x=2;y=1\)
Mà \(y=ax\)
\(\Rightarrow a=\dfrac{y}{x}=\dfrac{1}{2}\)
b) \(f\left(-2\right)=\dfrac{1}{2}\cdot\left(-2\right)=-1\\ f\left(4\right)=\dfrac{1}{2}\cdot4=2\\ f\left(0\right)=\dfrac{1}{2}\cdot0=0\)
Vậy \(f\left(-2\right)=-1\\ f\left(4\right)=2\\ f\left(0\right)=0\)
a) Vì đồ thị hàm số y=ax đi qua điểm A(2;1) nên
Thay x=2 và y=1 vào hàm số y=ax,ta được:
\(2a=1\)
hay \(a=\dfrac{1}{2}\)
Vậy: \(a=\dfrac{1}{2}\)
a: Vì (d) song song với y=2x-3 nên a=2
Vậy: (d): y=2x+b
Thay x=1 và y=1 vào (d), ta được:
b+2=1
hay b=-1
b: Vì (d) song song với y=2x nên a=2
Vậy: (d): y=2x+b
Thay x=-3 và y=0 vào (d), ta được:
b-6=0
hay b=6
a: Thay x=4 và y=2 vào y=ax, ta được:
4a=2
hay a=1/2