K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

29 tháng 11 2015

Dễ thì làm coi , mk tick cho . ( Đồ nói dóc , dùng hình thức nói quá )

29 tháng 11 2015

hình như cái này của hok kì II thì phải

AH
Akai Haruma
Giáo viên
4 tháng 5 2023

Lời giải:
Để pt có 2 nghiệm phân biệt $x_1,x_2$ thì:
$\Delta=(m+1)^2+8(m-1)>0$

$\Leftrightarrow m^2+10m-7>0(*)$

Áp dụng định lý Viet:

$x_1+x_2=\frac{m+1}{2}$

$x_1x_2=\frac{m-1}{2}$

Khi đó:
$x_1-x_2=x_1x_2$

$\Rightarrow (x_1-x_2)^2=(x_1x_2)^2$

$\Leftrightarrow (x_1+x_2)^2-4x_1x_2=(x_1x_2)^2$
$\Leftrightarrow (\frac{m+1}{2})^2-2(m-1)=(\frac{m-1}{2})^2$
$\Leftrightarrow m=2$ (thỏa mãn $(*)$)

Vậy......

a: Ta có: \(\left(x-\dfrac{2}{5}\right)\left(x+\dfrac{2}{7}\right)>0\)

\(\Leftrightarrow\left[{}\begin{matrix}x>\dfrac{2}{5}\\x< -\dfrac{2}{7}\end{matrix}\right.\)

22 tháng 8 2019

a) Ta có: (2x2 - 5x + 3)(x2 - 4x + 3) = 0

=> \(\orbr{\begin{cases}2x^2-5x+3=0\\x^2-4x+3=0\end{cases}}\)

=> \(\orbr{\begin{cases}2x^2-2x-3x+3=0\\x^2-3x-x+3=0\end{cases}}\)

=> \(\orbr{\begin{cases}2x\left(x-1\right)-3\left(x-1\right)=0\\x\left(x-3\right)-\left(x-3\right)=0\end{cases}}\)

=> \(\orbr{\begin{cases}\left(2x-3\right)\left(x-1\right)=0\\\left(x-1\right)\left(x-3\right)=0\end{cases}}\)

=> x = 3/2 hoặc x = 1

hoặc : x = 1 hoặc x = 3

=> Tập hợp A = {1; 3/2; 3}

b) Ta có: (x2 - 10x + 21)(x3 - x) = 0

=> (x2 - 7x - 3x + 21)x(x2 - 1) = 0

=> [x(x - 7) - 3(x - 7)x(x2 - 1) = 0

=> (x - 3)(x - 7)x(x - 1)(x+ 1) = 0

=> x - 3 = 0 hoặc x - 7 = 0 hoặc x = 0 hoặc x - 1 = 0 hoặc x + 1 = 0

=> x = 3 hoặc x = 7 hoặc x = 0 hoặc x = 1 hoặc x = -1

=> Tập hợp B = {-1; 0; 1; 3; 7}

17 tháng 8 2022

mày điên à đây là mini world à  đây không phải toán lớp 1 con ngu

 

19 tháng 3 2023

\(2x^2-\left(4m+3x\right)x+2m^2-1=0\)

\(-x^2-4mx+2m^2-1=0\)

\(\Delta=\left(4m\right)^2+4\left(2m^2-1\right)=24m^2-4\)

Để phương trình có 2 nghiệm phân biệt

\(\Leftrightarrow\Delta>0\Leftrightarrow24m^2-4>0\Leftrightarrow m>\dfrac{1}{\sqrt{6}}\)

Vì phương trình có 2 nghiệm phân biệt, Áp dụng hệ thức Vi ét, ta có:

\(\left\{{}\begin{matrix}x_1+x_2=-4m\\x_1.x_2=1-2m^2\end{matrix}\right.\)

Ta có: \(x_1^2+x_2^2=6\)

\(\Rightarrow\left(x_1+x_2\right)^2-2\left(x_1.x_2\right)=6\)

\(\Leftrightarrow16m^2-2\left(1-2m^2\right)=6\)

\(\Leftrightarrow20m^2=8\)

\(\Leftrightarrow m^2=\dfrac{2}{5}\Leftrightarrow\left[{}\begin{matrix}m=\sqrt{\dfrac{2}{5}}\left(TM\right)\\m=-\sqrt{\dfrac{2}{5}}\left(\text{Loại vì m}>\dfrac{1}{\sqrt{6}}\right)\end{matrix}\right.\)

Vậy ...

x1+x2=2m+2; x1x2=m^2+4

x1^2+2(m+1)x2<=2m^2+20

=>x1^2+x2(x1+x2)<=2m^2+20

=>x1^2+x2x1+x2^2<=2m^2+20

=>(x1+x2)^2-x1x2<=2m^2+20

=>(2m+2)^2-(m^2+4)<=2m^2+20

=>4m^2+8m+4-m^2-4-2m^2-20<=0

=>m^2-8m-20<=0

=>m<=-10 hoặc m>2

31 tháng 3 2023

\(x^2-2\left(m+1\right)x+m^2+4=0\left(1\right)\)

Để phương trình có hai nghiệm phân biệt thì \(\Delta'>0\) hay \(\Delta'=\left(m+1\right)^2-m^2-4=m^2+2m+1-m^2-4=2m-4>0\Leftrightarrow m>2\)

Theo hệ thức Viét ta có : \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1.x_2=m^2+4\end{matrix}\right.\)

Vì \(x_1^2\) là nghiệm của phương trình (1) nên ta có : \(x_1^2-2\left(m+1\right)x+m^2+4=0\Leftrightarrow x_1^2=2\left(m+1\right)x_1-m^2-4\)

Ta lại có : \(x_1^2+2\left(m+1\right)x_2\le2m^2+20\)

\(\Leftrightarrow2\left(m+1\right)x_1-m^2-4+2\left(m+1\right)x_2\le2m^2+20\)

\(\Leftrightarrow2\left(m+1\right)\left(x_1+x_2\right)-m^2-4\le2m^2+20\)

\(\Leftrightarrow4\left(m+1\right)^2-m^2\le2m^2+20\)

\(\Leftrightarrow4\left(m^2+2m+1\right)-m^2\le2m^2+20\)

\(\Leftrightarrow m^2+8m-16\le0\)

\(\Leftrightarrow-10\le m\le2\)

Kết hợp điều kiện....

 

NV
18 tháng 3 2021

\(\Delta'=\left(m+1\right)^2-\left(m^2+m-1\right)\ge0\)

\(\Leftrightarrow m+2\ge0\Rightarrow m\ge-2\)

Khi đó theo hệ thức Viet : \(\left\{{}\begin{matrix}x_1+x_2=2\left(m+1\right)\\x_1x_2=m^2+m-1\end{matrix}\right.\)

\(x_1^2+x_2^2=\left(x_1+x_2\right)^2-2x_1x_2=4\left(m+1\right)^2-2\left(m^2+m-1\right)=2m^2+6m+6\)

18 tháng 3 2021

x2 - 2(m + 1)x + m2 + m - 1 = 0

\(\Delta\) = [-2(m + 1)]2 - 4.1.(m2 + m - 1) = 4(m2 + 2m + 1) - 4m2 - 4m + 4 = 4m2 + 8m + 4 - 4m2 - 4m + 4 = 4m + 8

Để pt có nghiệm thì \(\Delta\) \(\ge\) 0 \(\Leftrightarrow\) 4m + 8 \(\ge\) 0 \(\Leftrightarrow\) m \(\ge\) -2

Với m \(\ge\) -2 ta có:

x1 = \(\dfrac{2\left(m+1\right)+\sqrt{4m+8}}{2}=m+1+\sqrt{m+2}\)

x2 = \(\dfrac{2\left(m+1\right)-\sqrt{4m+8}}{2}=m+1-\sqrt{m+2}\)

x1 + x2 = m + 1 + \(\sqrt{m+2}\) + m + 1 - \(\sqrt{m+2}\) = 2m + 2

x1x2 = (m + 1 + \(\sqrt{m+2}\))(m + 1 - \(\sqrt{m+2}\)) = (m + 1)2 - m - 2 = m2 + 2m + 1 - m - 2 = m2 + m - 1 = \(\left(m+\dfrac{1-\sqrt{5}}{2}\right)\left(m+\dfrac{1+\sqrt{5}}{2}\right)\)

(x1)2 + (x2)2 = (m + 1 + \(\sqrt{m+2}\))2 + (m + 1 - \(\sqrt{m+2}\))2 = (x1 + x2)2 - 2x1x2 = (2m + 2)2 - 2(m2 + m - 1) = 4m2 + 8m + 4 - 2m2 - 2m + 2 = 2m2 + 6m + 6 = 2(m2 + 3m + 3)

Chúc bn học tốt!

12 tháng 11 2015

=>   1/2 < x < 1

x thuộc Z

=> không có phần tử nào

NV
11 tháng 4 2022

Chắc là tìm n?

\(\Delta'=\left(n-1\right)^2+n+1=n^2-n+2=\left(n-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>0;\forall n\)

\(\Rightarrow\) Phương trình luôn có 2 nghiệm pb với mọi n

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(n-1\right)\\x_1x_2=-n-1\end{matrix}\right.\)

Đặt \(P=\left|x_1-x_2\right|\)

\(\Rightarrow P=\sqrt{\left(x_1-x_2\right)^2}=\sqrt{\left(x_1+x_2\right)^2-4x_1x_2}\)

\(=\sqrt{4\left(n-1\right)^2+4\left(n+1\right)}=2\sqrt{n^2-n+2}\)

\(=2\sqrt{\left(n-\dfrac{1}{2}\right)^2+\dfrac{7}{4}}\ge\sqrt{7}\)

\(P_{min}=\sqrt{7}\) khi \(n-\dfrac{1}{2}=0\Rightarrow n=\dfrac{1}{2}\)