Cho \(y=2x^2\) phải tịnh tiến ntn để được
\((P1): y = 2x^2 - 4x\)
\((P2): y=2x^2 + 6x\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Pt hoành độ giao điểm của (P1) và (P2) là:
\(2x^2+2x+3=x^2+6x\)
\(\Rightarrow x^2-4x+3=0\)
=> (x - 1).(x - 3) = 0
\(\Rightarrow\left[{}\begin{matrix}x_1=1\\x_2=3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}y_1=7\\y_2=27\end{matrix}\right.\)
Vậy 2 parabol này cắt nhau tại 2 điểm (1;7);(3;27)
Hàm \(y=f\left(x\right)\) có đồ thị (C):
\(\Rightarrow\) Khi tịnh tiến lên a đơn vị ta sẽ được đồ thị hàm \(y=f\left(x\right)+a\)
Khi tịnh tiến xuống dưới a đơn vị ta được đồ thị hàm \(y=f\left(x\right)-a\)
- Khi tịnh tiến sang phải a đơn vị ta sẽ được đồ thị hàm \(y=f\left(x-a\right)\)
- Khi tịnh tiến sang trái a đơn vị sẽ được đồ thị hàm \(y=f\left(x+a\right)\)
Do đó:
Khi tịnh tiến (P) lên 4 đơn vị ta được đồ thị hàm \(y=4x^2+4\)
Khi tịnh tiến (P) sang phải 2 đơn vị ta được đồ thị hàm: \(y=4\left(x-2\right)^2=4x^2-16x+16\)
Ta có: M(x, y, z) ∈ (P) ⇔ d(M, ( P 1 )) = d(M, ( P 2 ))
⇔ 2|2x + y + 2z + 1| = |4x − 2y − 4z + 7|
Từ đó suy ra phương trình mặt phẳng phải tìm là: 4y + 8z – 5 = 0 hoặc 8x + 9 = 0