Phân tích các đa thức sau thành tích
a) 3xyz2 - 5xzt
b) 49x2 - 25
c) x3 + 8z3
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1A:
a: \(x^3+2x=x\left(x^2+2\right)\)
b: \(3x-6y=3\left(x-2y\right)\)
c: \(5\left(x+3y\right)-15x\left(x+3y\right)\)
\(=5\left(x+3y\right)\left(1-3x\right)\)
d: \(3\left(x-y\right)-5x\left(y-x\right)\)
\(=3\left(x-y\right)+5x\left(x-y\right)\)
\(=\left(x-y\right)\left(5x+3\right)\)
1A. a. x(x2+2)
b. 3(x-2y)
c. 5(x+3y)(1-3x)
d. (x-y) (3-5x)
1B. a. 2x(2x-3)
b.xy(x2-2xy+5)
c. 2x(x+1)(x+2)
d. 2x(y-1)+2y(y-1)=2(y-1)(x-y)
45 + x 3 - 5 x 2 - 9 x = x 3 - 5 x 2 - 9 x - 45 = x 2 x - 5 - 9 x - 5 = x - 5 x 2 - 9 = x - 5 x - 3 x + 3
b) x3 – x2 – 5x + 125
= (x3 + 125) - (x2 + 5x)
= (x + 5)(x2 - 5x + 25) - x(x + 5)
= (x + 5)(x2 - 5x + 25 - x)
= (x + 5)(x2 - 6x + 25)
d) x3 + 3x2 – 3x – 1
= (x3 - 1) + (3x2 - 3x)
= (x - 1)(x2 + x + z) + 3x(x - 1)
= (x - 1)(x2 + 4x + 1)
a) x3 + 4x2 – 2x – 8
= (x3 + 4x2) - (2x + 8)
= x2(x + 4) - 2(x + 4)
= (x + 4)(x2 - 2)
= (x + 4)(x + √2)(x - √2)
a) x3 + 3x2 – 3x – 9
= (x3 + 3x2) - (3x + 9)
= x2(x + 3) - 3(x + 3)
= (x + 3)(x2 - 3)
= (x + 3)(x + √3)(x - √3)
a) Ta có: \(x^2-3x+xy-3y\)
\(=x\left(x-3\right)+y\left(x-3\right)\)
\(=\left(x-3\right)\left(x+y\right)\)
b) Ta có: \(x^3+10x^2+25x-xy^2\)
\(=x\left(x^2+10x+25-y^2\right)\)
\(=x\left(x+5-y\right)\left(x+5+y\right)\)
c) Ta có: \(x^3+2+3\left(x^3-2\right)\)
\(=4x^3-4\)
\(=4\left(x-1\right)\left(x^2+x+1\right)\)
1) \(\left(3x+2\right)^2-4\\ =\left(3x+2\right)^2-2^2\\ =\left(3x+2-2\right)\left(3x+2+2\right)\\ =3x.\left(3x+4\right)\)
2) \(4x^2-25y^2=\left(2x\right)^2-\left(5y\right)^2=\left(2x-5y\right)\left(2x+5y\right)\)
3) \(4x^2-49=\left(2x\right)^2-7^2=\left(2x-7\right)\left(2x+7\right)\)
4) \(8z^3+27=\left(2z\right)^3+3^3=\left(2z+3\right)\left(4z^2+6z+9\right)\)
5) \(\dfrac{9}{25}x^4-\dfrac{1}{4}=\left(\dfrac{3}{5}x^2\right)^2-\left(\dfrac{1}{2}\right)^2=\left(\dfrac{3}{5}x^2-\dfrac{1}{2}\right)\left(\dfrac{3}{5}x^2+\dfrac{1}{2}\right)\)
6) \(x^{32}-1\\ =\left(x^{16}\right)^2-1^2\\ =\left(x^{16}-1\right)\left(x^{16}+1\right)\\ =\left(x^8-1\right)\left(x^8+1\right)\left(x^{16}+1\right)\\ =\left(x^4-1\right)\left(x^4+1\right)\left(x^8+1\right)\left(x^{16}+1\right)\\ =\left(x^2-1\right)\left(x^2+1\right)\left(x^4+1\right)\left(x^8+1\right)\left(x^{16}+1\right)\\ =\left(x-1\right)\left(x+1\right)\left(x^2+1\right)\left(x^4+1\right)\left(x^8+1\right)\left(x^{16}+1\right)\)
1: \(\left(3x+2\right)^2-4=3x\left(3x+4\right)\)
2: \(4x^2-25y^2=\left(2x-5y\right)\left(2x+5y\right)\)
3: \(4x^2-49=\left(2x-7\right)\left(2x+7\right)\)
4: \(8z^3+27=\left(2z+3\right)\left(4z^2-6z+9\right)\)
5: \(\dfrac{9}{25}x^4-\dfrac{1}{4}=\left(\dfrac{3}{5}x^2-\dfrac{1}{2}\right)\left(\dfrac{3}{5}x^2+\dfrac{1}{2}\right)\)
a) \(3xyz^2-5xzt=xz\left(3yz-5t\right)\)
b) \(49x^2-25=\left(7x-5\right)\left(7x+5\right)\)
c) \(x^3+8z^3=\left(x+2z\right)\left(x^2+4zx+4x^2\right)\)