cm rang
a,56-104⋮9
b,(n+3)2-(n-1)2⋮8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.=(x-2)(x 2+2x+7)+2(x-2)(x+2)-5(x-2) = 0
=>(x-2)(x 2+2x+7+2x+4-5) = 0
=>(x-2)(x 2+4x+6) = 0
Mà x 2+4x+6 (E Z)
=> x 2+4x+6 > 0
Vậy (x-2)=0 => x = 2
a) Ta có: \(n^2+4n+3=\left(n+1\right)\left(n+3\right)\)
Mà n lẻ \(\Leftrightarrow n=2k+1\)( \(k\in Z\) )
\(\Leftrightarrow\left(n+1\right)\left(n+3\right)=\left(2k+1+1\right)\left(2k+1+3\right)\)
\(=\left(2k+2\right)\left(2k+4\right)\)
\(=4\left(k+1\right)\left(k+2\right)\)
Vì \(\left(k+1\right)\left(k+2\right)\) là tích 2 số nguyên liên tiếp nên \(\left(k+1\right)\left(k+2\right)⋮2\)
\(\Rightarrow4\left(k+1\right)\left(k+2\right)⋮4\cdot2=8\)( đpcm )
b) \(n^3+3n^2-n-3\)
\(=n^2\left(n+3\right)-\left(n+3\right)\)
\(=\left(n+3\right)\left(n^2-1\right)\)
\(=\left(n+3\right)\left(n-1\right)\left(n+1\right)\)
Vì n lẻ nên \(n=2p+1\) ( \(q\in Z\) )
Khi đó : \(\left(n+3\right)\left(n-1\right)\left(n+1\right)=\left(2p+1+3\right)\left(2q+1-1\right)\left(2q+1+1\right)\)
\(=\left(2q+4\right)\cdot2q\cdot\left(2q+2\right)\)
\(=8q\left(q+1\right)\left(q+2\right)\)
Vì \(q\left(q+1\right)\left(q+2\right)\) là tích 3 số nguyên liên tiếp nên \(\left\{{}\begin{matrix}q\left(q+1\right)\left(q+2\right)⋮3\\q\left(q+1\right)\left(q+2\right)⋮2\end{matrix}\right.\)
\(\Rightarrow q\left(q+1\right)\left(q+2\right)⋮3\cdot2=6\)
\(\Rightarrow8q\left(q+1\right)\left(q+2\right)⋮8\cdot6=48\)( đpcm )
\(n^3+3n^2-n-3=n^2\left(n+3\right)-\left(n+3\right)=\left(n^2-1\right)\left(n+3\right)=\left(n-1\right)\left(n+1\right)\left(n+3\right)\) n le => n=2k+1 \(\Rightarrow\left(n-1\right)\left(n+1\right)\left(n+3\right)=2k\left(2k+2\right)\left(2k+4\right)=8k\left(k+1\right)\left(k+2\right)\) k và k+1 là 2 stn liên tiếp =>\(k\left(k+1\right)⋮2\Rightarrow8k\left(k+1\right)⋮16\)
k;k+1;k+2 là 3 stn liên tiếp => \(k\left(k+1\right)\left(k+2\right)⋮3\Rightarrow n^3+3n^2-n-3⋮3.16=48\left(\left(3,16\right)=48\right)\)
a) \(A=111...1555...56\) (n cs 1, n-1 cs 5)
\(A=111...1000...0+555...50+6\) (n cs 1, n cs 0 (không tính số 0 ở số 555...50), n-1 cs 5)
\(A=111...1.10^n+555...5.10+6\) (n cs 1, n-1 cs 5)
\(A=\dfrac{999...9}{9}.10^n+\dfrac{5}{9}.999...9.10+6\) (n cs 9 ở phân số thứ nhất, n-1 cs 9 ở phân số thứ 2)
\(A=\dfrac{10^n-1}{9}.10^n+\dfrac{5}{9}.\left(10^{n-1}-1\right).10+6\)
\(A=\dfrac{\left(10^n\right)^2-10^n+5.10^n-50+54}{9}\)
\(A=\dfrac{\left(10^n\right)^2+4.10^n+4}{9}\)
\(A=\left(\dfrac{10^n+2}{3}\right)^2\)
Hiển nhiên \(3|10^n+2\) vì \(10^n+2\) có tổng các chữ số bằng 3, suy ra A là số chính phương.
Câu b áp dụng kĩ thuật tương tự nhé bạn.
Trả lời
a)2240:[(x-112).2 mũ 3]=5
(x-121)23 =2240:5
(x-121)8 =448
x-121 =448:8
x-121 =56
x =56+121
x =177.
Em có tk cj cx ko được lên điểm đâu, cj lm cho vui thôi !
Cho mk sửa lại ở câu c là 2^n+2 + 2^n+1 - 2^n = 56 nha!
a, 5^6 -10^4=5^2. 5^4 -5^4. 2^4
=5^4(5^2 -2^4)
=5^4. 9 \(⋮\) 9
b, (n+3)2- (n -1)2=(n+3- n+1)(n+3+ n- 1)
=4(2n+2)
=8n+ 8\(⋮8\)