Tìm n để A có gtri lon nhat, gtri nho nhat la bao nhiêu \(\frac{3n+3}{n-3}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lạnh Lạnh đúng vì;
\(a+\frac{1}{a}=a+\frac{9}{a}-\frac{8}{a}\ge2\sqrt{a.\frac{9}{a}}-\frac{8}{3}=2.3-\frac{8}{3}=\frac{10}{3}\)
Dấu "=" xảy ra khi và chỉ khi a=3
vậy min S=10/3 tại a=3
M=x2+y2-x+6y+10
=(x-1/2)2+(y+3)3+3/4
Ta thấy:(x-1/2)2>=0
(y+3)3>=0
=>(x-1/2)2+(y+3)>=0
=>(x-1/2)2+(y+3)+3/4>=0+3/4=3/4
Dấu "="<=>x=1/2 hoặc y=-3
Vậy...
\(A=x^2-5x+12\\ A=x^2-5x+\dfrac{25}{4}+\dfrac{23}{4}\\ A=\left(x^2-5x+\dfrac{25}{4}\right)+\dfrac{23}{4}\\ A=\left[x^2-2\cdot x\cdot\dfrac{5}{2}+\left(\dfrac{5}{2}\right)^2\right]+\dfrac{23}{4}\\ A=\left(x-\dfrac{5}{2}\right)^2+\dfrac{23}{4}\\ Do\text{ }\left(x-\dfrac{5}{2}\right)^2\ge0\forall x\\ \Rightarrow A=\left(x-\dfrac{5}{2}\right)^2+\dfrac{23}{4}\ge\dfrac{23}{4}\forall x\\ \text{Dấu "=" xảy ra khi : }\\ \left(x-\dfrac{5}{2}\right)^2=0\\ \Leftrightarrow x-\dfrac{5}{2}=0\\ \Leftrightarrow x=\dfrac{5}{2}\\ \text{Vậy }A_{\left(Min\right)}=\dfrac{23}{4}\text{ }khi\text{ }x=\dfrac{5}{2}\)
\(B=2x^2-14x+5\\ \\ A=2x^2-14x+\dfrac{49}{2}-\dfrac{39}{2}\\ A=\left(2x^2-14x+\dfrac{49}{2}\right)-\dfrac{39}{2}\\ A=2\left(x^2-7x+\dfrac{49}{4}\right)-\dfrac{39}{2}\\ A=\left[x^2-2\cdot x\cdot\dfrac{7}{2}+\left(\dfrac{7}{2}\right)^2\right]-\dfrac{39}{2}\\ A=\left(x-\dfrac{7}{2}\right)^2-\dfrac{39}{2}\\ Do\text{ }\left(x-\dfrac{7}{2}\right)^2\ge0\forall x\\ \Rightarrow A=\left(x-\dfrac{7}{2}\right)^2-\dfrac{39}{2}\ge-\dfrac{39}{2}\forall x\\ \text{Dấu "=" xảy ra khi : }\\ \left(x-\dfrac{7}{2}\right)^2=0\\ \Leftrightarrow x-\dfrac{7}{2}=0\\ \Leftrightarrow x=\dfrac{7}{2}\\ \text{Vậy }B_{\left(Min\right)}=-\dfrac{39}{2}\text{ }khi\text{ }x=\dfrac{7}{2}\)
\(B=2x^2-14x+5\\ B=2x^2-14x+\dfrac{49}{2}-\dfrac{39}{2}\\ B=\left(2x^2-14x+\dfrac{49}{2}\right)-\dfrac{39}{2}\\ B=2\left(x^2-7x+\dfrac{49}{4}\right)-\dfrac{39}{2}\\ B=2\left[x^2-2\cdot x\cdot\dfrac{7}{2}+\left(\dfrac{7}{2}\right)^2\right]-\dfrac{39}{2}\\ B=2\left(x-\dfrac{7}{2}\right)^2-\dfrac{39}{2}\\ \)
Do \(\left(x-\dfrac{7}{2}\right)^2\ge0\forall x\)
\(\Rightarrow2\left(x-\dfrac{7}{2}\right)^2\ge0\forall x\)
\(\Rightarrow B=2\left(x-\dfrac{7}{2}\right)^2-\dfrac{39}{2}\ge-\dfrac{39}{2}\forall x\)
Dấu \("="\) xảy ra khi :
\(\left(x-\dfrac{7}{2}\right)^2=0\\ \Leftrightarrow x-\dfrac{7}{2}=0\\ \Leftrightarrow x=\dfrac{7}{2}\)
Vậy \(B_{\left(Min\right)}=-\dfrac{39}{2}\) khi \(x=\dfrac{7}{2}\)
Do máy bị lỗi nên câu B bị trục trặc.
Mk xin lỗi.
Để A có giá trị dương
Thì 5n - 7 chia hết cho 9
Nên : 5n - 7 thuôc BC của 9
=> BC(9) = {0;9;18;27;......}
=> 5n - 7 = {0;9;18;27;......}
=> 5n = {7;16;25;32;........}
=> mà n là số tự nhiên nhỏ nhất và A đạt giá trị dương nhỏ nhất
Nên => 5n = 25
=> n = 5
n^2 + 3n - 13 chia hết cho n + 3
<=> n.(n + 3) - 13 chia hết cho n + 3
mà n. ( n + 3 )
=> 13 chia hết cho n + 3
=> n + 3 thuộc W ( 13 ) = { - 13; -1; 1 ; 13 }
=> n thuộc { -16; -4; -2; 10 }
Vậy GTNN của n là - 16.
\(A=\frac{3n+3}{n-3}\left(n\ne3\right)\)
\(A=\frac{3\left(n-3\right)+12}{n-3}=3+\frac{12}{n-3}\)
A có GTLN khi \(\frac{12}{n-3}\)nhỏ nhất => n-3 nhỏ nhất
=> n-3=1
=> n=4
A có GTNN khi \(\frac{12}{n-3}\)lớn nhất => n-3 lớn nhất
=> n-3 =12
=> n=15