Phân tích đa thức sau thành nhân tử:
a, 9a2b - 18ab + 9b2 - y2
b, a3 + 2a2 + a - 2
c, 64a4 + b8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) \(x^4+2x^3-4x-4=\left(x^4+2x^3+x^2\right)-\left(x^2+4x+4\right)\)
\(=\left(x^2+x\right)^2-\left(x+2\right)^2=\left(x^2+x-x-2\right)\left(x^2+x+x+2\right)\)
\(=\left(x^2-2\right)\left(x^2+2x+2\right)\)
a) Ta có: \(x^4+2x^3-4x-4\)
\(=\left(x^4+2x^3+x^2\right)-\left(x^2+4x+4\right)\)
\(=\left(x^2+x\right)^2-\left(x+2\right)^2\)
\(=\left(x^2+x-x-2\right)\left(x^2+x+x+2\right)\)
\(=\left(x^2-2\right)\cdot\left(x^2+2x+2\right)\)
\(1,\\ a,=\left(x-y\right)^2-z^2=\left(x-y-z\right)\left(x-y+z\right)\\ b,=a^2\left(a-x\right)-y\left(a-x\right)=\left(a^2-y\right)\left(a-x\right)\\ c,=\left(x-y\right)^2-z\left(x-y\right)=\left(x-y\right)\left(x-y-z\right)\\ d,=x\left(x-2y\right)+t\left(x-2y\right)=\left(x+t\right)\left(x-2y\right)\\ 2,\\ \Rightarrow x^2-4x+4-x^2+9=6\\ \Rightarrow-4x=-7\Rightarrow x=\dfrac{7}{4}\\ 3,\\ a,x^2+2x+2=\left(x+1\right)^2+1\ge1>0\\ b,-x^2+4x-5=-\left(x-2\right)^2-1\le-1< 0\)
\(9a^2b+6ab^2+b^3-6ab-2b^2\)
\(=b\left(9a^2+6ab+b^2-6a-2b\right)\)
\(=b\left[\left(3a+b\right)^2-2\left(3a+b\right)\right]\)
\(=b\left(3a+b\right)\left(3a+b-2\right)\)
\(=b\left(9a^2+6ab+b^2\right)-2b\left(3a+b\right)\)
\(=b\left(3a+b\right)^2-2b\left(3a+b\right)\)
\(=b\left(3a+b\right)\left(3a+b-2\right)\)
\(9a^2b+6ab^2+b^3-6ab-2b^2\)
\(=b\left(9a^2+6ab+b^2-6a-2b\right)\)
\(=b\left[\left(3a+b\right)^2-2\left(3a+b\right)\right]\)
\(=b\left(3a+b\right)\left(3a+b-2\right)\)
d) (8a3 – 27b3) – 2a(4a2 – 9b2)
= (2a – 3b)(4a2 + 6ab + 9b2) – 2a(2a – 3b)(2a + 3b)
= (2a – 3b)(4a2 + 6ab + 9b2 – 4a2 – 6ab) = 9b2(2a – 3b)
b: \(x^2-2xy+y^2-z^2\)
\(=\left(x-y\right)^2-z^2\)
\(=\left(x-y-z\right)\left(x-y+z\right)\)
d: \(x^2+4x+3=\left(x+3\right)\left(x+1\right)\)
\(A=x\left(y^2-z^2\right)+y\left(z^2-x^2\right)+z\left(x^2-y^2\right)=x\left(y^2-z^2\right)+y\left(-y^2+z^2-x^2+y^2\right)+z\left(x^2-y^2\right)=\left(y^2-z^2\right)\left(x-y\right)+\left(x^2-y^2\right)\left(z-y\right)=\left(y-z\right)\left(y+z\right)\left(x-y\right)-\left(x-y\right)\left(x+y\right)\left(y-z\right)=\left(x-y\right)\left(y-z\right)\left(y+z-x-y\right)=\left(x-y\right)\left(y-z\right)\left(z-x\right)\)
\(B=a\left(b^3-c^3\right)+b\left(c^3-a^3\right)+c\left(a^3-b^3\right)=ab^3-ac^3+bc^3-a^3b+a^3c-b^3c=ab\left(b^2-a^2\right)-c^3\left(a-b\right)+c\left(a^3-b^3\right)=-ab\left(a-b\right)\left(a+b\right)-c^3\left(a-b\right)+c\left(a-b\right)\left(a^2+ab+b^2\right)=\left(a-b\right)\left(-a^2b-ab^2-c^3+a^2c+abc+b^2c\right)\)
a(b3 - c3) + b(c3 - a3) + c(a3 - b3)
= a(b3 - c3 ) + b( c3 - b3 + b3 - a3) + c(a3 - b3)
= a(b3 - c3) + b(c3 - b3) + b(b3 - a3) + c(a3 - b3)
= a(b3 - c3) - b(b3 - c3) - [b(a3 - b3) - c(a3- b3)]
= (b3 - c3)(a - b) - (a3- b3)(b - c)
= (b - c)(b2 + bc + c2)(a - b) - (a - b)(a2 + ab + b2)(b - c)
= (b - c)(a - b)(b2 + bc + c2 - a2 + ab - b2)
= (b - c)(a - b) [ (c2 - a2) + (bc - ab) ]
= (b - c)(a - b) [ (c - a)(c + a) + b(c - a) ]
= (b - c)(a -b) [ (c - a)(c + a + b) ]
= (a- b)(b - c)(c - a)(a + b + c)
b_ \(a^3-2a^2+a-2\left(\text{sửa đề}\right)=a^2\left(a-2\right)+a-2=\left(a^2+1\right)\left(a-2\right)\)
a) Mk nghĩ đề là : \(9a^2-18ab+9b^2-y^2\)
\(=\left(3a-3b\right)^2-y^2=\left(3a-3b-y\right)\left(3a-3b+y\right)\)
c) \(64a^4+b^8=64a^4+16a^2b^4+b^8-16a^2b^4\)
\(=\left(8a^2+b^4\right)^2-\left(4ab^2\right)^2\)
\(=\left(8a^2-4ab^2+b^4\right)\left(8a^2+4ab^2+b^4\right)\)